ECblue Basic

Motorbaugrößen: D (116), G (152)

EC-Ventilatoren und Motoren mit höchstem Wirkungsgrad

Montageanleitung

Aufbewahren zum Nachschlagen!

Montageanleitung ECblue Basic

Inhaltsübersicht

1	Allge	emeine Hinweise			
	1.1	Gültigkeit			
	1.2	Bedeutung der Montageanleitung			
	1.3	Zielgruppe			
	1.4	Haftungsausschluss			
	1.5	Urheberrecht			
	1.6	FCC/IC Statements			
2	Sich	erheitshinweise			
	2.1	Bestimmungsgemäße Verwendung			
	2.2	Bestimmungswidrige Verwendung			
	2.3	Symbolerklärung			
	2.4	Produktsicherheit			
	2.5	Anforderungen an das Personal / Sorgfaltspflicht			
	2.6	Arbeiten am Gerät			
	2.7	Veränderungen / Eingriffe am Gerät			
	2.8	Sorgfaltspflicht des Betreibers			
	2.9	Beschäftigung von betriebsfremdem Personal			
3	Produktübersicht				
	3.1	Einsatzbereich Anwendung			
	3.2	Funktionsbeschreibung			
	3.3	Auslegungskriterien für lange Lebensdauer			
	3.4	Hinweis zur ErP-Richtlinie			
	3.5	Transport, Lagerung			
	3.6	Entsorgung / Recycling			
4	Mon	tage			
	4.1	Allgemeine Hinweise			
	4.2	Anschlussleitung & Anschlusskasten			
	4.3	Aufstellung in feuchter Atmosphäre			
	4.4	Motorheizung			
	4.5	Anschluss gemäß UL und CSA in verschiedenen Anwendungen			
		4.5.1 Anschluss der Installationsrohre entsprechend NEC und CEC Zulassung			
		4.5.2 Anschluss in NFPA 79 Anwendungen			
	4.6	Montage von Axialventilatoren			

Montageanleitung ECblue Basic

		4.6.1 Ventila	atoren Bauform A, D, K, S und W (ohne Düsen)	1
			u in Abluftkamine, Bauform T	1
		4.6.3 ZAplu	s Ventilatoren	2
		4.6.4 Monta	age MAXvent Ventilatoren	2
	4.7		Radialventilatoren	2
		4.7.1 Monta	age von Radialventilatoren Bauform RE, RH, RM, RZ .	2
		4.7.2 Monta	age von Radialventilatoren Bauform RG / RD	2
		4.7.3 Geräte	eaufstellung: Bauform ER / GR / WR	2
		4.7.4 Optim	ale Einbauabstände für RH / ER / GR Ventilatoren	2
		4.7.5 Optim	ale Einbauabstände für WR Ventilatoren	2
	4.8	Montage von	Motoren	2
5	Elekt	rische Installa	ation	2
	5.1	Sicherheitsvo	orkehrungen	2
	5.2	Ausführung n	nit Anschlussleitungen	2
	5.3	_	ohne Anschlussleitungen	2
	5.4	-	e Installation	3
			schwingungsströme bei 3 ~ Typen	3
			rleitungen	3
	5.5	Netzanschlus	ss	3
		5.5.1 Netzs	pannung	3
		5.5.2 Erford	lerliche Qualitätsmerkmale der Netzspannung	3
			gsschutzsicherung	3
		5.5.4 UL: K	urzschlussschutz für Stromabzweig (UL508C)	3
			tz im IT-System	3
			tz im geerdeten Dreieck-System	3
	5.6	Anlagen mit I	Fehlerstrom-Schutzschalter	3
	5.7	Motorschutz		3
	5.8	Analog Einga	ang "E1" zur Vorgabe der Drehzahl	3
	5.9	Ausgangsspa	annung "10 V"	3
	5.10	Spannungsve	ersorgung für externe Geräte (+24 V, GND)	3
	5.11	Digital Eingar	ng "D1" zur Freigabe (Gerät EIN / AUS)	3
	5.12	Relaisausgar	ng "K1" zur Störmeldung	3
	5.13		Steuerspannungsanschlüsse	3
	5.14	Option Zusat	zmodule	3
6	Inbe	triebnahme		4
	6.1		ngen für die Inbetriebnahme	4
7	Diag	nose / Störun	gen	4
	7.1		eitigung	4

Montageanleitung ECblue Basic

	7.2 7.3	Status Out mit Blinkcode Bremsfunktion und Verhalten bei Drehung durch Luftstrom	43 46
8	Servi 8.1 8.2	cearbeiten	47 47 48
9	Anha	ng	49
	9.1	Technische Daten	49
	9.2	UL-Spezifikationen	51
		9.2.1 UL: Bemessungsangaben	51
		9.2.2 UL: Überlastschutz	53
		9.2.3 UL: Bemessung Kurzschlussstrom	54
	9.3	Anschlussplan	55
	9.4	EG-Einbauerklärung	56
	9.5	Stichwortverzeichnis	58
	9.6	Herstellerhinweis	59
	9.7	Servicehinweis	59

1 Allgemeine Hinweise

1.1 Gültigkeit

Dieses Dokument ist für Motoren und Ventilatoren der Baureihe ECblue Basic gültig. Motorbaugrößen: D (116) und G (152).

Die Motorbaugröße ist in der Typenbezeichnung zu erkennen (© Leistungsschild).

Beispiele für Typenbezeichnungen mit Motorbaugröße D = 116					
Motoren Typ	Motoren Typ Axialventilatoren Typ Radialventilatoren Typ				
MK116 I	FI D DI. D ZI. D	RH I _ D GR I _ D ER I _ D WR I _ D			

Information

Beachten Sie bei Ventilatoren mit Prüfzeichen (Leistungsschild) abhängig vom Einsatzort die damit verbunden Angaben!

1.2 Bedeutung der Montageanleitung

Lesen Sie vor Installation und Inbetriebnahme sorgfältig diese Montageanleitung, um einen korrekten Gebrauch sicherzustellen!

Wir weisen darauf hin, dass diese Montageanleitung nur gerätebezogen und keinesfalls für die komplette Anlage gilt!

Die vorliegende Montageanleitung dient zum sicherheitsgerechten Arbeiten an und mit dem genannten Gerät. Sie enthält Sicherheitshinweise, die beachtet werden müssen, sowie Informationen, die für einen störungsfreien Betrieb des Gerätes notwendig sind. Die Montageanleitung ist am Gerät aufzubewahren. Es muss gewährleistet sein, dass alle Personen, die Tätigkeiten am Gerät auszuführen haben, die Montageanleitung jederzeit einsehen können.

Die Montageanleitung ist für weitere Verwendung aufzubewahren und muss an jeden nachfolgenden Besitzer, Benutzer oder Endkunden weitergegeben werden.

1.3 Zielgruppe

Die Montageanleitung wendet sich an Personen, die mit der Planung, Installation, Inbetriebnahme, sowie Wartung und Instandhaltung betraut sind und über die ihrer Tätigkeit entsprechenden Qualifikation und Kenntnisse verfügen.

1.4 Haftungsausschluss

Eine Übereinstimmung des Inhalts dieser Montageanleitung mit der beschriebenen Hardware und Software des Gerätes wurde überprüft. Dennoch können Abweichungen vorliegen; für eine vollständige Übereinstimmung wird keine Gewähr übernommen. Änderungen der Konstruktion und technischen Daten behalten wir uns im Interesse der Weiterentwicklung vor. Aus den Angaben, Abbildungen bzw. Zeichnungen und Beschreibungen können deshalb keine Ansprüche hergeleitet werden. Der Irrtum ist vorbehalten.

Die ZIEHL-ABEGG SE haftet nicht für Schäden aufgrund von Fehlgebrauch, sachwidriger Verwendung, unsachgemäßer Verwendung oder als Folge von nicht autorisierten Reparaturen bzw. Veränderungen.

1.5 Urheberrecht

Diese Montageanleitung enthält urheberrechtlich geschützte Informationen. Die Montageanleitung darf ohne vorherige Genehmigung der ZIEHL-ABEGG SE weder vollständig noch in Auszügen fotokopiert, vervielfältigt, übersetzt oder auf Datenträgern erfasst werden. Zuwiderhandlungen sind schadensersatzpflichtig. Alle Rechte vorbehalten, einschließlich solcher, die durch Patenterteilung oder Eintragung eines Gebrauchsmusters entstehen.

1.6 FCC/IC Statements

Information

Die nachfolgenden Angaben sind für die Verwendung des Produktes in den USA oder Canada bestimmt, deshalb werden diese bei Übersetzungen nicht berücksichtigt.

In case that the AM-MODBUS-W module or the AM-PREMIUM-W module is installed in the ECblue, the following applies:

FCC Compliance (US)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Warning

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

IC Compliance (Canada)

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter

tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

Note: If AM-MODBUS-W module or AM PREMIUM-W module is used and installed by the user, the FCC/IC label (AM-MODBUS-W inside label for AM-MODBUS-W module, EM-W inside label for AMPREMIUM- W module) have to stick on the housing of the FCblue.

Sticking the AM-MODBUS-W inside label on the ECblue housing.

Sticking the EM-W inside label on the ECblue housing.

Note: The modules (AM-MODBUS-W and AM-PREMIUM-W) are stricly limited for the integration and usage with host devices manufactured by ZIEHL-ABEGG SE.

2 Sicherheitshinweise

Dieses Kapitel enthält Hinweise zur Vermeidung von Personen- sowie Sachschäden. Mit den Hinweisen wird kein Anspruch auf Vollständigkeit erhoben. Bei Fragen und Problemen stehen die Techniker in unserem Hause für Rückfragen zur Verfügung.

2.1 Bestimmungsgemäße Verwendung

Achtung!

- Die Ventilatoren sind nur zur F\u00f6rderung von Luft oder luft\u00e4hnlichen Gemischen bestimmt.
- Eine andere oder darüber hinausgehende Benutzung, wenn nicht vertraglich vereinbart, gilt als nicht bestimmungsgemäß. Für hieraus resultierende Schäden haftet der Hersteller nicht. Das Risiko trägt allein das Verwenderunternehmen bzw. der Verwender.
- Einbauventilatoren nicht an offene Abzugsrohre von Gas- und anderen Feuerungsgeräten anschließen.
- Einbauventilatoren mit VDE Zulassung (siehe Leistungsschild) sind zum Einbau innerhalb von Geräten bestimmt und nicht für den direkten Netzanschluss geeignet.
- Zur bestimmungsgemäßen Verwendung gehört auch das Lesen von diesem Dokument sowie das Einhalten aller darin enthaltenen Hinweise - insbesondere der Sicherheitshinweise.
- Zu beachten ist auch die Dokumentation angeschlossener Komponenten.

2.2 Bestimmungswidrige Verwendung

Bestimmungswidrige Verwendung / Vernünftigerweise vorhersehbare Fehlanwendungen

- Fördern von gasförmig aggressiven und explosiven Medien.
- Der Einsatz in explosionsgefährdeten Bereichen zur Förderung von Gas, Nebel, Dämpfen oder deren Gemisch.
- Fördern von Feststoffen oder Feststoffanteilen im Fördermedium.
- Betreiben mit vereisten Laufrädern.
- Fördern von abrasiven oder anhaftenden Medien.
- Fördern von flüssigen Medien.
- Benutzen des Ventilators einschließlich der Anbauteile (z. B. Schutzgitter) als Ablage oder Aufstieghilfe.
- Ventilatoren auch mit einem additiven Diffusor-Aufsatz (Nachrüstbausatz) sind nicht als begehbar ausgelegt! Ein Aufsteigen darf ohne geeignete Hilfsmittel nicht erfolgen.
- Eigenmächtiges bauliches Verändern des Ventilators.
- Betreiben des Ventilators als sicherheitstechnisches Bauteil bzw. für die Übernahme von sicherheitsrelevanten Funktionen im Sinne der EN ISO 13849-1.
- Blockieren oder Abbremsen des Ventilators durch Hineinstecken von Gegenständen.
- · Lösen von Ventilatorflügel, Laufrad und Wuchtgewicht.
- Weiterhin alle nicht in der bestimmungsgemäßen Verwendung genannten Einsatzmöglichkeiten.

Für alle Personen- und Sachschäden, die aus nicht bestimmungsgemäßer Verwendung entstehen, ist nicht der Hersteller, sondern der Betreiber des Gerätes verantwortlich.

2.3 Symbolerklärung

Sicherheitshinweise werden durch ein Warndreieck hervorgehoben und je nach Gefährdungsgrad wie folgt dargestellt.

Achtung!

Allgemeine Gefahrenstelle. Tod, schwere Körperverletzung oder erheblicher Sachschaden können auftreten, wenn entsprechende Vorsichtsmaßnahmen nicht getroffen werden!

Gefahr durch elektrischen Strom

Gefahr durch gefährliche, elektrische Spannung! Tod oder schwere Körperverletzung können auftreten, wenn entsprechende Vorsichtsmaßnahmen nicht getroffen werden!

Information

Wichtige Zusatzinformationen und Anwendungstipps.

2.4 Produktsicherheit

Das Gerät entspricht zum Zeitpunkt der Auslieferung dem Stand der Technik und gilt grundsätzlich als betriebssicher. Das Gerät sowie dessen Zubehör darf nur in einwandfreiem Zustand und unter Beachtung der Montageanleitung bzw. Betriebsanleitung eingebaut und betrieben werden. Ein Betrieb außerhalb der technischen Spezifikationen des Gerätes (siehe Leistungsschild und Anhang / Technische Daten) kann zu einem Defekt des Gerätes führen und weiterführende Schäden verursachen!

Information

Bei einer Störung oder bei Ausfall des Gerätes ist zur Vermeidung von Personen- oder Sachschäden eine separate Funktionsüberwachung mit Alarmierungsfunktionen erforderlich, Ersatzbetrieb muss berücksichtigt werden! Bei der Planung und Errichtung der Anlage müssen die örtlichen Bestimmungen und Verordnungen eingehalten werden.

2.5 Anforderungen an das Personal / Sorgfaltspflicht

Personen, die mit Planung, Installation, Inbetriebnahme sowie Wartung und Instandhaltung in Verbindung mit dem Gerät betraut sind, müssen über die ihrer Tätigkeit entsprechenden Qualifikation und Kenntnisse verfügen.

Zusätzlich müssen sie Kenntnisse über Sicherheitsregeln, EU-/EG-Richtlinien, Unfallverhütungsvorschriften und der entsprechenden nationalen Vorschriften sowie regionale und innerbetriebliche Vorschriften besitzen. Zu schulendes, einzuweisendes oder anzulernendes Personal darf nur unter Aufsicht einer erfahrenen Person am Gerät tätig werden. Dies gilt auch für sich in der allgemeinen Ausbildung befindliches Personal. Das gesetzliche Mindestalter ist zu beachten.

2.6 Arbeiten am Gerät

Information

Montage, elektrischer Anschluss und Inbetriebnahme dürfen nur von einer Elektrofachkraft, entsprechend den elektrotechnischen Regeln (u. a. EN 50110 od. EN 60204) vorgenommen werden!

Gefahr durch elektrischen Strom

- Es ist grundsätzlich verboten, Arbeiten an Geräteteilen durchzuführen, die unter Spannung stehen. Die Schutzart des geöffneten Gerätes ist IP00! Lebensgefährliche Spannungen können direkt berührt werden.
- Der Rotor ist weder schutzisoliert noch schutzgeerdet nach EN 60204-1, daher muss durch den Errichter der Anlage der Schutz durch Umhüllungen nach EN 61140 vorgesehen werden, bevor der Motor an Spannung gelegt wird. Dieser Schutz kann beispielsweise durch ein Berührschutzgitter erreicht werden (Produktübersicht: Einsatzbereich Anwendung und Montage: Allgemeine Hinweise).
- Bei selbstständigem Lauf des Motors z. B. durch Luftströmung oder Nachlaufen nach Abschaltung, können durch den generatorischen Betrieb gefährliche Spannungen von über 50 V an den internen Motoranschlüssen auftreten.
- Die Spannungsfreiheit ist mit einem zweipoligen Spannungsprüfer festzustellen.
- Nach Abschalten der Netzspannung können gefährliche Ladungen zwischen Schutzleiter "PE" und Netzanschluss auftreten.
- Der Schutzleiter führt (abhängig von Taktfrequenz, Zwischenkreisspannung und

Motorkapazität) hohe Ableitströme. Auf EN-gerechte Erdung ist deshalb auch unter Prüf- oder Versuchsbedingungen zu achten (EN 50 178, Art. 5.2.11). Ohne Erdung können am Motorgehäuse gefährliche Spannungen anstehen.

Wartungsarbeiten dürfen nur durch geeignetes Fachpersonal vorgenommen werden.

Wartezeit mindestens 3 Minuten!

- Durch den Einsatz von Kondensatoren besteht auch nach dem Ausschalten Lebensgefahr durch direkte Berührung von spannungsführenden Teilen oder Teilen die aufgrund von Fehlzuständen spannungsführend geworden sind.
- Das Abnehmen bzw. Öffnen des Controllergehäuses ist nur bei abgeschalteter Netzzuleitung und nach drei Minuten Wartezeit zulässig.

Achtung, automatischer Wiederanlauf!

- Der Ventilator / Motor kann aus Funktionsgründen automatisch ein- und ausschalten.
- Nach Netzausfall bzw. Netzabschaltung erfolgt nach Wiederkehr der Spannung ein automatischer Wiederanlauf des Ventilators!
- Vor der Annäherung den Stillstand des Ventilators abwarten!
- Beim Außenläufermotor dreht sich während des Betriebs der außenliegende Rotor!

Ansauggefahr!

Keine losen oder herunterhängenden Kleidungsstücke, Schmuck usw. tragen, lange Haare zusammenbinden und abdecken.

Achtung, heiße Oberfläche!

 An den Motoroberflächen, insbesondere am Controllergehäuse können Temperaturen über 85 °C auftreten!

2.7 Veränderungen / Eingriffe am Gerät

Achtung!

Am Gerät dürfen aus Sicherheitsgründen keine eigenmächtigen Eingriffe oder Veränderungen vorgenommen werden. Alle geplanten Veränderungen müssen vom Hersteller schriftlich genehmigt werden.

Verwenden Sie nur Original-Ersatzteile / Original-Verschleißteile / Original-Zubehörteile von ZIEHL-ABEGG. Diese Teile sind speziell für das Gerät konzipiert. Bei fremdbezogenen Teilen ist nicht gewährleistet, dass diese beanspruchungs- und sicherheitsgerecht konstruiert und gefertigt sind.

Teile und Sonderausstattungen, die nicht von ZIEHL-ABEGG geliefert wurden, sind nicht von ZIEHL-ABEGG zur Verwendung freigegeben.

2.8 Sorgfaltspflicht des Betreibers

- Der Unternehmer oder Betreiber hat dafür zu sorgen, dass die elektrischen Anlagen und Betriebsmittel entsprechend den elektrotechnischen Regeln betrieben und instand gehalten werden.
- Der Betreiber ist verpflichtet, das Gerät nur in einwandfreiem Zustand zu betreiben.
- Das Gerät darf nur bestimmungsgemäß verwendet werden (siehe "Einsatzbereich").
- Die Sicherheitseinrichtungen müssen regelmäßig auf ihre Funktionstüchtigkeit überprüft werden.
- Die Montageanleitung bzw. Betriebsanleitung ist stets in einem leserlichen Zustand und vollständig am Einsatzort des Gerätes zur Verfügung zu halten.
- Das Personal ist regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit und Umweltschutz zu unterweisen und muss die Montageanleitung bzw. Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennen.
- Alle am Gerät angebrachten Sicherheits- und Warnhinweise dürfen nicht entfernt werden und müssen leserlich bleiben.

2.9 Beschäftigung von betriebsfremdem Personal

Instandhaltungs- und Wartungsarbeiten werden häufig von betriebsfremdem Personal durchgeführt, dass die speziellen Umstände und die daraus resultierenden Gefahren oft nicht kennt. Diese Personen müssen ausführlich über die Gefahren in ihrem Tätigkeitsbereich informiert werden.

Die Arbeitsweise ist zu kontrollieren, um im Bedarfsfall rechtzeitig einschreiten zu können.

3 Produktübersicht

3.1 Einsatzbereich Anwendung

Die Ventilatoren / Motoren sind keine gebrauchsfertigen Produkte, sondern als Komponenten für Kälte-, Klima-, Be- und Entlüftungsanlagen konzipiert (Typenbezeichnung siehe Leistungsschild).

Die Ventilatoren dürfen erst betrieben werden, wenn sie ihrer Bestimmung entsprechend eingebaut sind. Der mitgelieferte und bestätigte Berührschutz von ZIEHL-ABEGG SE Ventilatoren ist nach DIN EN ISO 13857 Tabelle 4 (ab 14 Jahren) ausgelegt. Bei Abweichungen müssen weitere bauliche Schutzmaßnahmen zum sicheren Betrieb getroffen werden.

3.2 Funktionsbeschreibung

ECblue steht für EC-Ventilatoren und Motoren mit höchstem Wirkungsgrad. Es werden hocheffiziente elektronisch kommutierte Motoren mit Permanentmagneten eingesetzt, die über den integrierten Controller drehzahlgeregelt werden.

Die Geräte sind entsprechend den allgemeinen Anforderungen der EN 61800-2 für drehzahlveränderbare elektrische Antriebe aufgebaut und für den Ein-Quadrantenbetrieb konzipiert.

3.3 Auslegungskriterien für lange Lebensdauer

Die Lebensdauer von Geräten mit Leistungselektronik ist entscheidend von der Umgebungstemperatur abhängig. Je länger sich elektronische Bauteile in erhöhter Umgebungstemperatur befinden, umso schneller altern diese und Ausfälle werden wahrscheinlicher.

Dieses Gerät ist auf eine Lebensdauer von mindestens 40.000 h bei S1-Betrieb mit maximaler Leistung in maximal zulässiger Umgebungstemperatur ausgelegt. Damit dies erreicht werden kann, schützt sich die Leistungselektronik durch ein aktives Temperaturmanagement selbst vor überhöhter Temperatur.

Dieses kann jedoch nicht in allen Fällen einen vollkommenen Schutz bewirken. Beachten Sie die Bemessungsdaten – insbesondere die maximal zulässige Umgebungstemperatur – auf dem Leistungsschild.

3.4 Hinweis zur ErP-Richtlinie

Die Fa. ZIEHL-ABEGG SE weist darauf hin, dass aufgrund der Verordnung (EU) Nr. 327/2011 der Kommission vom 30. März 2011 zur Durchführung der Richtlinie 2009/125/EG (nachfolgend ErP-Verordnung genannt) der Einsatzbereich gewisser Ventilatoren innerhalb der EU an gewisse Voraussetzungen gebunden ist.

Nur wenn die Anforderungen der ErP-Verordnung für den Ventilator erfüllt sind, darf dieser innerhalb der EU eingesetzt werden.

Sollte der gegenständliche Ventilator keine CE-Kennzeichnung aufweisen (vgl. insbesondere Leistungsschild), dann ist die Verwendung dieses Produktes innerhalb der EU nicht zulässig.

Alle ErP-relevanten Angaben beziehen sich auf Messungen, die in einem standardisierten Messaufbau ermittelt wurden. Genauere Angaben sind beim Hersteller zu erfragen. Weitere Informationen zur ErP-Richtlinie (Energy related Products-Directive) auf www.ziehl-abegg.de, Suchbegriff: "ErP".

3.5 Transport, Lagerung

Achtuna!

- Beachten Sie die Gewichtsangaben (siehe Leistungsschild) und die zulässigen Traglasten des Transportmittels.
- Bei der Handhabung Sicherheitsschuhe und Schutzhandschuhe benutzen!
- · Nicht am Anschlusskabel transportieren!
- Schläge und Stöße während des Transports sind zu vermeiden.
- Vermeiden Sie extreme Feuchtigkeit, Hitze- oder Kälteeinwirkung (siehe Technische Daten).
- Achten Sie auf eventuelle Beschädigung der Verpackung oder des Ventilators.
- Paletten beim Transport fixieren.
- Paletten nicht stapeln.
- Handhabung nur mit geeigneten Hebezeugen.
- Anordnung der Lasttraverse quer zur Motorachse. Auf ausreichende Breite der Lasttraverse achten.
- Stellen Sie sich auf keinen Fall unter den schwebenden Ventilator, da im Falle eines Defektes am Transportmittel Lebensgefahr besteht.

- Lagern Sie den Ventilator / Motor trocken und wettergeschützt in der Originalverpackung und schützen Sie ihn bis zur endgültigen Montage vor Schmutz und Wettereinwirkung.
- Vermeiden Sie zu lange Lagerzeiträume, wir empfehlen max. ein Jahr (bei längeren Zeiträumen vor Inbetriebnahme Rücksprache mit dem Hersteller).
- Überprüfen Sie vor dem Einbau die ordnungsgemäße Funktion der Motorlagerung.
 - Empfehlung: Drehen Sie das Laufrad regelmäßig von Hand um ein Festsitzen und Beschädigungen des Lagers zu vermeiden.
- Transportieren Sie den/die Ventilator/en entweder original verpackt oder größere Ventilatoren an den dafür vorgesehenen Transportvorrichtungen.
 - Axialventilatoren: Bohrungen in Tragarmen, Wandringplatten und Motorblock
 - Radialventilatoren je nach Bauart: Hebösen, Bohrungen in Gehäuseflansch, Motorbock, Befestigungswinkel und Tragblechen, Bohrungen am Motorgehäuse zum Einschrauben von Ringschrauben)
- Radiallaufräder, Gehäuseventilatoren RG.., RD.. oder Einbauventilatoren ER.., GR.., WR.. werden in der Regel auf Europaletten geliefert und können mittels Hubwagen transportiert werden.
- Bauform RG.. / RD.. / ER.. / GR.. / WR.. : Ventilatoreinheit darf nur mit geeignetem Hebezeug (Lasttraverse) angehoben und transportiert werden. Auf ausreichende Seil- bzw. Kettenlänge ist zu achten.
- Bauform FV.. / DN..: Damit sich die Flansche nicht verziehen, muss der Ventilator beim Transport an 4 Punkten befestigt werden.
- Bauform WR: maximal zulässige Anzahl für das Anheben aufeinander montierter Ventilatoreinheiten

Baugröße	Außenabmessungen [mm]	Zulässige Anzahl
1	607 x 607	5
2	760 x 760	4
3	912 x 912	3

Achtung!

Das Anheben mehrerer Ventilatoreinheiten nebeneinander ist nicht zulässig!

3.6 Entsorgung / Recycling

Die Entsorgung muss sachgerecht und umweltschonend, nach den gesetzlichen Bestimmungen des ieweiligen Landes erfolgen.

- > Trennen Sie die Materialien sortenrein und umweltgerecht.

4 Montage

4.1 Allgemeine Hinweise

Achtung!

- Prüfen Sie den Ventilator vor der Montage auf evtl. Beschädigungen, z. B. Risse, Beulen oder Beschädigungen am elektrischen Anschlusskabel. Bei einem vorliegenden Transportschaden ist die Inbetriebnahme nicht zulässig!
- Montage nur von ausgebildetem Fachpersonal vornehmen lassen. Es obliegt der Verantwortung des System- oder Anlagenherstellers bzw. Betreibers, dass anlagenbezogene Einbau- und Sicherheitshinweise sich im Einklang mit den geltenden Normen und Vorschriften (EN ISO 12100 / 13857) befinden.
- Bei der Handhabung Sicherheitsschuhe und Schutzhandschuhe benutzen!
- Nehmen Sie den Ventilator mit einem Hebezeug (Lasttraverse) aus der Verpackung. Anschlagpunkte sind ausschließlich die Bohrungen am Gehäuseflansch, Motorbock, Tragblechen, Motoraufhängungen, Befestigungswinkel, sowie eventuell angebrachte Kranösen des Ventilators (je nach Bauform des Ventilators).
- Beim Anheben mit Lasttraverse darf die Kette / das Seil das Laufrad und den gegebenenfalls aufgebauten Frequenzumrichter nicht berühren, sonst sind Beschädigungen möglich.
- Bei einem Gewicht größer 25 kg bei Männern / 10 kg bei Frauen, ist das Herausnehmen des Ventilators mit zwei Personen durchzuführen (nach REFA). Gegebenenfalls können die Werte national auch abweichen.
- Vor Einbau des Ventilators ist zu prüfen, ob die Sicherheitsabstände gemäß EN ISO 13857 bzw. in Haushaltsgeräten nach EN 60335 eingehalten werden. Wenn die Einbauhöhe (Gefahrenbereich) über der Bezugsebene größer oder gleich 2700 mm ist und nicht durch Hilfsmittel wie Stühle, Leitern, Arbeitspodest oder Standflächen auf Fahrzeugen verringert wird, ist ein Berührschutzgitter am Ventilator nicht erforderlich.
- Befindet sich der Ventilator im Gefahrbereich, ist durch den Hersteller der Gesamtanlage oder den Betreiber sicher zu stellen, dass durch schützende Konstruktion nach EN ISO 13857 eine Gefährdung vermieden wird.
- Bei einer Montage mit hängendem Rotor müssen Schutzmaßnahmen gegen fallende Teile getroffen werden.
- Die kundenseitige Konstruktion muss den auftretenden Beanspruchungen entsprechen.
- Die Befestigungsmittel mit dem angegebenen Drehmoment anziehen.
- Bohrspäne, Schrauben und andere Fremdkörper dürfen nicht ins Innere des Gerätes eindringen!
- Für einen Einsatz bei Umgebungstemperaturen unterhalb von -10 °C ist die Vermeidung von außergewöhnlichen, stoßartigen oder mechanischen Beanspruchungen bzw. Belastungen des Materials Voraussetzung (min. zulässige Umgebungstemperatur Technische Daten).
- Bei sendzimirverzinkten Bauteilen ist Korrosion an den Schnittkanten möglich.
- Entfernen Sie vor dem ersten Einschalten eventuell vorhandene Gegenstände (Bohrspäne, Schrauben und andere Fremdkörper) aus dem Ansaugbereich -Verletzungsgefahr durch herausfliegende Gegenstände!

4.2 Anschlussleitung & Anschlusskasten

Information

- ▷ Bei erhöhter Beanspruchung (Nassräume, Freiluftaufstellung) Anschlussleitungen mit Wasserablaufbogen vorsehen.
- Bei der Montage eines Anschlusskastens in der Nähe des Motors muss dieser tiefer als der Motor montiert werden, damit sichergestellt ist, dass kein Wasser durch die Anschlussleitungen in den Motor eindringen kann.

Anschlusskomponenten nicht beschichten!

- Eine Beschichtung von Anschlusskabel, Kabelverschraubungen und Elektronikdeckel (z. B. durch Lackieren, Streichen, Pulverbeschichten), ist ohne Rücksprache mit ZIEHL-ABEGG nicht zulässig!
- Die Lackierung des Deckels ist nur mit Lacken zulässig, die von ZIEHL-ABEGG freigeben sind!

4.3 Aufstellung in feuchter Atmosphäre

Information

Bei längeren Stillstandszeiten in feuchter Atmosphäre wird empfohlen, den Motor / Ventilator monatlich für mindestens 2 Stunden in Betrieb zu nehmen, damit eventuell eingedrungene Feuchtigkeit verdunstet.

4.4 Motorheizung

Für einen sicheren Betrieb bis zur minimal zulässigen Umgebungstemperatur (siehe Technische Daten), ist eine kontinuierliche Stromversorgung erforderlich.

Wenn der Motor bei bestehender Stromversorgung nicht eingeschaltet wird (kein Vorgabesignal, Abschaltung über die Freigabe), schaltet die Motorheizung automatisch bei einer Controller-Innentemperatur von -19 °C ein und bei einer Erwärmung auf -15 °C wieder aus.

Die Heizung erfolgt über die Wicklung des Motors, dabei wird ein Strom eingeprägt, der keine Drehung verursachen kann.

4.5 Anschluss gemäß UL und CSA in verschiedenen Anwendungen

Nur für Motoren / Ventilatoren mit entsprechendem Prüfzeichen (Leistungsschild)

4.5.1 Anschluss der Installationsrohre entsprechend NEC und CEC Zulassung

Installationsrohre

Achtung!

Die integrierten drehzahlveränderlichen Antriebe der Baureihe MK116 und MK152 für die Ventilatoren des Typs ECblue für den nordamerikanischen Wirtschaftsraum (erkennbar am Leistungsschild) sind als Frequenzumrichter (Power-Conversion-Equipment) nach UL508C zugelassen.

Zudem besitzen die Motoren eine Gehäuseschutzklasse 3 (Environmental type rating class 3) nach UL50(E) für den Außeneinsatz (Outdoor-Use).

Hierzu sind zwingend folgende Vorgaben einzuhalten:

- Gewindeadapter, metrisch auf Zoll, die dem Anschluss von Installationsrohren (Conduits) dienen, können bei ZIEHL-ABEGG im Dreierpack bestellt werden:
 - für MK116: Teilenummer 00297623
 - für MK152: Teilenummer 00297624
- Diese sind zu verwenden, damit der Motor entsprechend den Vorgaben durch den NEC[®] (National Electrical Code, ANSI/NFPA 70) und UL508 an die Gegebenheiten vor Ort angeschlossen werden kann.
- Der Installateur / Anlagenbauer hat für den fachgerechten Anschluss der Adapter und Rohre zu sorgen, so dass keine Schäden durch eindringende Feuchte oder Wasser auftreten. Zur Abdichtung der Verschraubungen ist darauf zu achten, dass die mitgelieferten O-Ringe Verwendung finden. Beim Eindrehen der Installationsrohre in die Gewindeadapter ist UL zugelassenes Dichtband zu verwenden (z. B. Teflon Band).
- Die auf dem Motor gegenüberliegende Seite der Installationsrohre muss verschlossen werden, damit durch den leichten Unterdruck der im Anschlussraum herrscht, Feuchtigkeit und Staub nicht angesaugt werden können.
- Die Verschlussschrauben, die bei den Baureihen MK116 und MK152 verwendet werden, sind nur für den Transport bestimmt, für die Installation müssen diese entfernt werden.
- Es muss eine Anschlusstechnologie verwendet werden, welche für die Gehäuseschutzklasse des Antriebs geeignet ist!

alternativ: flexibler Anschluss

Sollte aufgrund zu geringen Bauraums der Anschluss der Installationsrohre mittels der Gewindeadapter nicht möglich sein, empfiehlt ZIEHL-ABEGG seinen Kunden ein flexibles Anschlussschlauchsystem mit einer Zulassung nach UL514B.

Dieses kann beispielsweise auf Anlagen od. Maschinen ebenso verwendet werden. Hierzu gilt es jedoch, die Anlage / Maschine entsprechend der UL508 aufzubauen / zuzulassen.

Mögliche Anbieter: - Anamet, - Flexa GmbH, - Thomas & Betts **Achtung!** ZIEHL-ABEGG kann hierfür keine Gewährleistung der Gehäuseschutzklasse 3 (Environmental type rating class 3) geben.

Unabhängig von der Art und Weise des Rohr- / Schlauchanschlusses gilt es durch fachgerechten Anschluss der Versorgungsleitung(en) die Sicherheit von Personen und Objekten zu jeder Zeit sicher zu stellen.

4.5.2 Anschluss in NFPA 79 Anwendungen

In Anwendungen nach NFPA 79 (Elektrischer Standard für industrielle Maschinen), können die **beiliegenden** Kabelverschraubungen verwendet werden.

Die Kabelverschraubungen können bei ZIEHL-ABEGG im Dreierpack nachbestellt werden:

• für MK116: Teilenummer 00295308

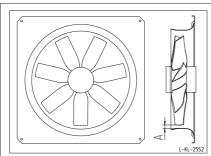
für MK152: Teilenummer 00296715

Achtung!

- Unabhängig von der Art und Weise des Rohr- / Schlauchanschlusses gilt es durch fachgerechten Anschluss der Versorgungsleitung(en) die Sicherheit von Personen und Objekten zu jeder Zeit sicher zu stellen.
- Die Verschlussschrauben, die bei den Baureihen MK116 und MK152 verwendet werden, sind nur für den Transport bestimmt, für die Installation müssen diese entfernt werden.
- Es muss eine Anschlusstechnologie verwendet werden, welche für die Gehäuseschutzklasse des Antriebs geeignet ist!

4.6 Montage von Axialventilatoren

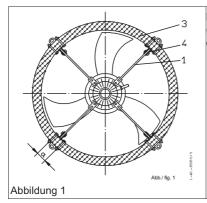
Information


- Schraubenüberstand ist nicht zulässig und kann zum Streifen oder Blockieren des Rotors führen.
- Nicht verspannt einbauen. Anbauflächen müssen eben sein.
- Bei vertikaler Motorachse muss das jeweils untenliegende Kondenswasserloch geöffnet sein.
- ▷ Ventilator-Anschlusskabel mit Kabelbindern an Berührschutzgitter oder Motorstreben befestigen.

4.6.1 Ventilatoren Bauform A, D, K, S und W (ohne Düsen)

Zur Befestigung am feststehenden Motorflansch Schrauben der Festigkeitsklasse 8.8 bzw. A2-70 (Edelstahl) nach EN ISO 4014 verwenden und mit geeigneter Schraubensicherung versehen.

Zulässige Anziehdrehmomente M _A					
Motorbaugröße	D	D	G		
Gewindegröße	M6 (Sonderapplikation mit 5er-Teilung)	M8	M10		
Festigkeitsklasse 8.8, Reibwert µges = 0,12	9,5 Nm	23 Nm	40 Nm		
Edelstahl A2-70, Reibwert μges = 0,12 Einschraublänge	7 Nm ≥ 1,5 x d	17 Nm ≥ 1,5 x d	33 Nm ≥ 1,5 x d		


Bei Verwendung von Schrauben mit anderen Reibwerten oder Festigkeitsklassen können abweichende Anzugsmomente erforderlich sein.

Es ist ein Mindestkopfspalt "A" von 2,5 mm in allen Einbaulagen, vor allem jedoch in Einbaulage H (Motorwelle horizontal), erforderlich. Verspannung durch unebene Auflage kann durch Streifen des Laufrades zum Ausfall des Ventilators führen.

4.6.2 Einbau in Abluftkamine, Bauform T

Lage der Haltewinkel(4) nach **Abbildung 1** im Kamin (3) mittels Schablone 4 x 90° anreißen, Lochabstand "a" entsprechend den Haltewinkeln (4) bohren.

	Einstellbarer Durchmesserbereich		
Ventilatorbaugröße	min.	max.	
F_063	640	660	
F_071	725	745	
F_080	815	835	
F_091	915	935	

Haltewinkel (4) und der Haltebügel (5) **Abbildung 2** mit Schrauben (6) nur soweit anziehen, dass Haltewinkel und Haltebügel sich nicht in die Kaminwandung (3) eingraben.

Zur Schraubensicherung werden selbstsichernde Muttern (7) verwendet. Die beiliegenden Schutzkappen (8) sind auf die Enden der Ventilator-Tragarme (1) zu schieben, **Abbildung 2**.

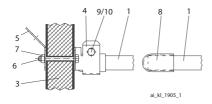


Abbildung 2

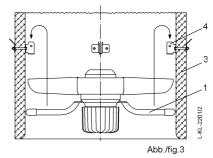


Abbildung 3

Ventilator (1) nach **Abbildung 3** in den Kamin einführen und in den Haltewinkeln (4) zentrieren. Zusätzlich ist die Halterung nach **Abbildung 2** durch Verschraubung (9/10) zu sichern.

Die vier Haltebügel (5) sind als Tragöse ausgebildet und können, wenn erforderlich, zur zusätzlichen Befestigung (z. B. durch Tragseile) dienen, um den Kamin vom Gewicht größerer Ventilatoren zu entlasten.

Einbausatz (Art.-Nr. 00291545)

Pos.	Benennung	Stück
1	Axialventilator	-
3	Kamin	-
4	Haltewinkel	4
5	Haltebügel	4
6	Schraube M8x70 EN ISO 4014	8
7	Mutter M8 EN ISO 10511 selbstsichernd	8
7a	Scheibe 8,4 EN ISO 7089	8
8	Schutzkappe	4
9	Schraube M8x30 EN ISO 4017	4
10	Mutter M8 EN ISO 10 511 selbstsichernd	4
10a	Scheibe 8,4 EN ISO 7089	4

Alle Befestigungselemente aus Edelstahl

4.6.3 ZAplus Ventilatoren

ZAplus Ventilatoren Typ ZC, ZF, ZN: Bei der Montage von ZAplus ist auf eine kunststoffgerechte Verschraubung zu achten.

Wenn flache Scheiben nach EN ISO 7089 oder DIN125 zur Befestigung verwendet werden, dann wird ein zulässiger Anzugsmoment bei Festigkeitsklasse 8.8 und einem Reibwert µges = 0,12 von M8 = 12 Nm / M10 = 24 Nm / M12 = 40 Nm empfohlen. Da der konkrete Schraubfall je nach Kundengerät variiert, müssen diese Empfehlungen auf die jeweilige Situation hin überprüft werden.

Die Verschraubung des Gitters ist mit einem Anzugsmoment von 6 Nm anzuziehen. Die Kabelabdeckung ist nach Anschluss des Motors mit 2 Kabelbindern gegen Verlieren zu sichern.

Bei einer Ausführung mit einer quadratischen Rückwand (Bauform Q) ist eine Demontage dieser quadratischen Kunststoffplatte nicht zulässig.

4.6.4 Montage MAXvent Ventilatoren

Zur Befestigung am feststehenden Motorflansch Schrauben der Festigkeitsklasse 8.8 bzw. A2-70 (Edelstahl) nach EN ISO 4014 verwenden und mit geeigneter Schraubensicherung versehen.

Beachten Sie folgende Punkte für alle Ventilatorbauarten:

- Nicht ohne geeignete Träger/Halterungen einbauen.
- Den Ventilator unter Verwendung aller Befestigungspunkte der Flansche mit geeigneten Schrauben befestigen.
- Die Zubehörteile mit geeigneten Schrauben befestigen.

Anziehdrehmomente zur Befestigung von Ventilator und Zubehörteilen:

Anziehdrehmomente M _A				
Gewindegröße	M6 (Sonderapplikation mit 5er-Teilung)	M8	M10	M12
Festigkeitsklasse 8.8, Reibwert μges = 0,12	9,5 Nm	23 Nm	46 Nm	79 Nm
Edelstahl A2-70, Reibwert µges = 0,12	6,4 Nm	15,3 Nm	31 Nm	52 Nm
Einschraublänge	≥ 1,5 x d	≥ 1,5 x d	≥ 1,5 x d	≥ 1,5 x d

Bei Verwendung von Schrauben mit anderen Reibwerten oder Festigkeitsklassen können abweichende Anzugsmomente erforderlich sein.

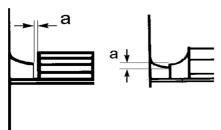
4.7 Montage von Radialventilatoren

4.7.1 Montage von Radialventilatoren Bauform RE, RH, RM, RZ

Zur Befestigung am feststehenden Motorflansch Schrauben der Festigkeitsklasse 8.8 nach EN ISO 4014 verwenden und mit geeigneter Schraubensicherung versehen.

Zulässige Anziehdrehmomente M _A				
Motorbaugröße D G				
Gewindegröße	M8	M10		
Festigkeitsklasse 8.8, Reibwert µges = 0,12	23 Nm	40 Nm		
Einschraublänge	≥ 1,5 x d	≥ 1,5 x d		

Bei Verwendung von Schrauben mit anderen Reibwerten oder Festigkeitsklassen können abweichende Anzugsmomente erforderlich sein.


Montage von Radialventilatoren der Bauform RZ

Befestigung an Aufhängung des Motorlüfterrades nach Vorgaben des Geräteherstellers.

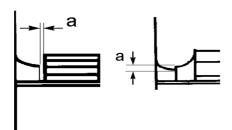
Information

- Schraubenüberstand ist nicht zulässig und kann zum Streifen oder Blockieren des Rotors führen.
- ▷ Jeder Schraubfall ist unterschiedlich. Das darauf abgestimmte Anziehdrehmoment muss durch entsprechende Schraubversuche ermittelt werden.
- ▷ Bei vertikaler Motorachse muss das jeweils untenliegende Kondenswasserloch geöffnet sein.

Auf gleichmäßigen Spalt "a" nach Abbildung achten. Verspannung durch unebene Auflage kann durch Streifen des Laufrades zum Ausfall des Ventilators führen.

Achtung!

- Nicht verspannt einbauen. Flansch und Befestigungswinkel müssen plan aufliegen.
- Der Ventilator muss fest, gegebenenfalls über Schwingungsisolatoren, montiert sein.


4.7.2 Montage von Radialventilatoren Bauform RG.. / RD..

Befestigung je nach Gehäusebauform an Flansch oder Befestigungswinkeln.

Information

Bei Befestigung am Flansch ist ein zusätzlicher Winkel erforderlich. Dieser ist als Zubehör erhältlich.

Auf gleichmäßigen Spalt "a" nach Abbildung achten. Verspannung durch unebene Auflage kann durch Streifen des Laufrades zum Ausfall des Ventilators führen.

Achtung!

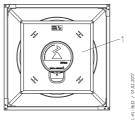
- · Nicht verspannt einbauen. Flansch und Befestigungswinkel müssen plan aufliegen.
- Verschraubungen mit geeigneter Schraubensicherung versehen.

4.7.3 Geräteaufstellung: Bauform ER.. / GR.. / WR..

- Um die Übertragung störender Schwingungen zu vermeiden, wird eine Körperschallentkopplung des kompletten Einbauventilators empfohlen. (Feder- bzw. Dämpfungselemente sind nicht Bestandteil des serienmäßigen Lieferumfangs). Die Positionierung der Entkopplungselemente entnehmen Sie unserem Katalog oder fordern Sie unter Angabe der Typenbezeichnung und Art.-Nr. ein Maßblatt an.
- Aufstellung im Freien nur, wenn in den Bestellunterlagen ausdrücklich vermerkt und bestätigt. Bei längeren Stillstandszeiten in feuchter Umgebung besteht die Gefahr von Lagerschäden. Korrosion durch entsprechende Schutzmaßnahmen vermeiden. Eine Überdachung ist erforderlich.
- Bei vertikaler Motorachse muss das jeweils untenliegende Kondenswasserloch (sofern vorhanden) geöffnet sein.
- Die Bauform GR in Einbaulage "H" (horizontale Welle) ist in Vorzugsrichtung einzubauen. Die Kabelführungen zeigen dabei nach unten (bis max. 30° schräg zur Seite).
 Dies wird durch den Warnhinweis "OBEN/TOP" am Gerät gekennzeichnet.
- Bauform ER.. / WR.. ist nur zulässig mit Motorwelle horizontal.

Achtuna!

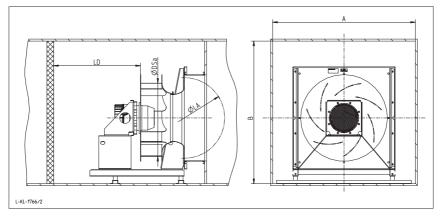
- Alle Auflagepunkte müssen betriebssicher verbunden sein. Bei nicht ausreichender Befestigung besteht Gefahr durch Kippen des Ventilators.
- Eigenmächtige Veränderungen/Umbauten am Lüftungsmodul sind nicht zulässig -Sicherheitsrisiko.



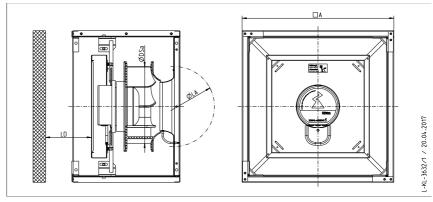
Bauform WR: maximal zulässige Anzahl für das Aufstellen mehrerer Ventilatoreinheiten übereinander

Baugröße	Außenabmessungen [mm]	Zulässige Anzahl
1	607 x 607	5
2	760 x 760	5
3	912 x 912	5

Achtung!


Der Optimizer ist nur eingerastet. Externe mechanische Beanspruchung (z. B. Festhalten oder Anbringen von Montageelementen) ist nicht zulässig.

Der Optimizer kann für bessere Zugänglichkeit (z. B. Kabelverlegung oder Reinigung) vorübergehend abgenommen werden.


1 Optimizer

4.7.4 Optimale Einbauabstände für RH.. / ER.. / GR.. Ventilatoren

- Saugseitiger Abstand: LA ≥ 0,5 x DSa *
- Druckseitiger Abstand: LD ≥ 1 x DSa
- Schaufelaustrittsdurchmesser: Ø DSa
- Gehäusewandabstände: A = 1,8 x DSa (A = B)
- * Bei gestörter Strömung (z. B. saugseitiger Krümmer, Klappen, etc.) LA ≥ 1xDSa

4.7.5 Optimale Einbauabstände für WR.. Ventilatoren

- Saugseitiger Abstand: LA ≥ 0,5 x DSa *
- Druckseitiger Abstand: LD ≥ 0,3 x DSa
- Schaufelaustrittsdurchmesser: Ø DSa
- Gehäusewandabstände: A = 1,8 x DSa (A = B)
- * Bei gestörter Strömung (z. B. saugseitiger Krümmer, Klappen, etc.) LA ≥ 1xDSa

4.8 Montage von Motoren

Motoren Bauform MK

Befestigung am feststehenden Motorflansch & Montage von Axialventilatoren / Ventilatoren Bauform A, D .. und Montage von Radialventilatoren Bauform RH

- Wird der Motor als Antrieb von Ventilatorlaufrädern oder anderen Komponenten verwendet, beachten Sie die max. zulässigen Drehzahlen des Laufrades bzw. der anzutreibenden Komponenten.
- Die max. zulässige Masse des Laufrades bzw. der anzutreibenden Komponente muss bei ZIEHL-ABEGG erfragt und schriftlich bestätigt werden.

Bauform K (mit Rotorflansch) oder D (mit versetztem Rotorflansch) als Antrieb für Ventilatoren:

- Beim Aufbau von Ventilatorlaufrädern oder anderen Komponenten darf keine unzulässige Kraft auf die Motorlagerung ausgeübt werden.
- Ventilatorlaufrad sauber zentrieren und nicht verspannt auf dem Rotorflansch aufbauen, das Ventilatorlaufrad muss plan aufliegen.
- Zur Befestigung des Ventilatorlaufrades auf dem Rotorflansch geeignete Schrauben verwenden und mit geeigneter Schraubensicherung versehen.
- · Jeder Schraubfall muss durch Versuch auf Tauglichkeit geprüft werden.
- Die zulässige Flächenpressung vom Stahlflansch darf dabei nie überschritten werden (abhängig von der Auflagefläche).
- Zu großer Schraubenüberstand ist nicht zulässig und kann zum Streifen oder Blockieren des Rotors am feststehenden Motorflansch führen.
- Motoren sind standardmäßig ungewuchtet, es ist eine Komplettauswuchtung mit aufgebautem Ventilatorlaufrad erforderlich. Die Auswuchtung muss am Ventilatorlaufrad erfolgen. Hierbei sind die einschlägigen Vorschriften zu beachten.

Zulässige Anziehdrehmomente M _A			
Motorbaugröße	D	G	
Gewindegröße	M6	M8	
Festigkeitsklasse 8.8, Reibwert µges = 0,12	9,5 Nm	23 Nm	
Einschraublänge	≥ 0,83 x d	≥ 0,83 x d	
Max. zulässiger Schraubenüberstand	1,0 mm	1,5 mm	

5 Elektrische Installation

5.1 Sicherheitsvorkehrungen

Gefahr durch elektrischen Strom

- Arbeiten an elektrischen Teilen dürfen nur von einer Elektrofachkraft oder elektrisch unterwiesenen Personen unter Aufsicht einer Elektrofachkraft gemäß den Regeln der Technik durchgeführt werden.
- Die 5 elektrischen Sicherheitsregeln müssen beachtet werden!
- Niemals unter Spannung am Gerät arbeiten! Auch nach dem Abschalten steht der Zwischenkreis noch unter Spannung. Eine Wartezeit von mind. 3 Minuten ist einzuhalten.
- Benachbarte elektrische Einrichtungen bei Montagearbeiten abdecken.
- Gegebenenfalls können zur Realisierung der sicheren elektrischen Trennung weitere Maßnahmen erforderlich werden.
- Das Gerät darf nur an Stromkreise angeschlossen werden, die mit einem allpolig trennenden Schalter abschaltbar sind.
- Ein Betrieb des Gerätes mit entfernten Gehäuseabdeckungen ist unzulässig, da im Inneren des Gerätes spannungsführende, blanke Teile vorhanden sind. Eine Missachtung dieser Bestimmung kann zu erheblichen Personenschäden führen.
- Der Betreiber des Gerätes ist für die EMV-Verträglichkeit der gesamten Anlage gemäß der vor Ort geltenden Normen verantwortlich.
- Elektrische Ausrüstungen sind regelmäßig zu überprüfen: Lose Verbindungen sind wieder zu befestigen, beschädigte Leitungen oder Kabel sind sofort auszutauschen.

5.2 Ausführung mit Anschlussleitungen

Information

- Bei Ausführungen mit Anschlussleitungen erfolgt der Anschluss an den farbcodierten Adern. Beachten Sie hierzu die Kabelbanderolen auf der Anschlussleitungen und den Anschlussplan im Anhang der Montageanleitung.
- Art, Länge, Farbcodierung und Anschlussbelegung der Anschlussleitungen können je nach Ausführung variieren.
- Beachten Sie bei einem Neuanschluss an den Klemmen im Anschlussraum das nachfolgende Kapitel "Anschluss an Klemmen im Anschlussraum".

Beispiel für mögliche Ausführung

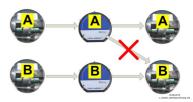
1 ~ ECblue, für Netz und Relais: Schlauchleitung 5 x 1,5 mm² (LiF9Y11Y-JB)			
BN	braun	L1	
BU GNYE	blau	N	Netz
WH WH	grüngelb	PE	
WH WH	weiß	11	Relais
	weiß	14	K1

3 ~ ECblue, für Netz und Relais: Schlauchleitung 6 x 1,5 mm² (LiF9Y11Y-JB)			
BN	braun	L1	
BU or GY BK GNYE	blau oder grau	L2	Netz
WH WH	schwarz	L3	
	grüngelb	PE	
	weiß	11	Relais
	weiß	14	K1

1 ~ und 3 ~ ECblue, für Steuerung: Schlauchleitung 5 x 0,5 mm² (LiF9Y11Y-0B)			
YE BU GN RD BN	gelb	E1	Analog In 1
	blau	GND	
	grün	D1	Digital In 1
	rot	10V	DC Out
	braun	24V	DC Out

5.3 Ausführung ohne Anschlussleitungen

- 1 Deckel Controllergehäuse
- 2 Kabelverschraubungen + Dichteinsatz für zwei Leitungen (bei Bedarf einsetzbar)
 - Motorbaugröße "D": 3 x M16 + 1 x Dichteinsatz mit zwei Bohrungen 5 mm
 - Motorbaugröße "G": 3 x M20 + 1 x Dichteinsatz mit zwei Bohrungen 6 mm
- 3 Kabeleinführungen mit Kunststoffverschluss
- 4 Netzanschluss
- 5 Anschluss Störmelderelais
- 6 Anschluss Steuerung
- 7 Steckplatz für Zusatzmodul


Vorgehensweise:

- 1. Für den Anschluss den Deckel vom Controllergehäuse abnehmen.
- Im Auslieferungszustand sind alle 3 Kabeleinführungen verschlossen. Je nach Bedarf Kunststoffverschluss entfernen und beiliegende Kabelverschraubung einsetzen, nicht benötigte Einführungen müssen verschlossen bleiben!
- 3. Leitungen fachgerecht einführen und anschließen.
- Vor der Inbetriebnahme Deckel vom Controllergehäuse wieder sorgfältig in richtiger Position anbringen.

Achtung!

Die Dichtung des Abschlussdeckels kann im Laufe der Zeit die Kontur der Statorbuchse annehmen.

Montieren Sie deshalb den Deckel wieder auf den gleichen Motor, von dem dieser abgenommen wurde, um maximale Dichtheit zu erreichen.

Deckel nicht vertauschen!

Achtung!

- Im Controller Anschlussraum können Temperaturen bis 80 °C auftreten.
- Für den Anschluss sind wärmebeständige Leitungen zu verwenden oder alternativ Silikonschläuche einzusetzen.
- Nur Leitungen verwenden, die eine dauerhafte Dichtigkeit in Kabelverschraubungen gewährleisten (druckfest-formstabiler, zentrisch-runder Mantel; z. B. mittels Zwickelfüllung)! Leitungen mit Füll-Fleece sind nicht zulässig, da es zu Feuchtigkeitseintritt durch Kapillarwirkung kommen kann!
- Das Einführen von zwei Leitungen durch eine Kabelverschraubung, ist nur mit dem Dichteinsatz für zwei Leitungen zulässig.
- Bei Verwendung des Dichteinsatzes für zwei Leitungen ist es nicht zulässig, die betreffende Kabelverschraubung mit nur einer Leitung zu benutzen!
- Es muss unbedingt darauf geachtet werden, dass es zu keiner Verbindung zwischen unterschiedlichen Anschlüssen kommen kann (z. B. durch Aufspleißung oder lose Anschlussdrähte).
- Montagerückstände und Fremdkörper dürfen nicht im Inneren verbleiben!
 Montagerückstände, Fremdkörper und Schmutz müssen aus dem Dichtungsbereich zwischen Deckel und Controllergehäuse entfernt werden.

Information

Die jeweiligen Anschlüsse sind im Anhang dieser Montageanleitung dargestellt (Anschlussplan)!

Anziehdrehmomente MA

	Gewinde- größe	Anziehdreh- moment M _A		Bemerkung
		[Nm]	[Lb In]	
Kabelverschraubung	M16	2,5	22	Dichtbereich Kabeldurchmesser 410 mm
Kabelverschraubung	M20	4	35	Dichtbereich Kabeldurchmesser 612 mm
Verschlussschraube	M16 + M20	2,5	22	Schlitzschraubendreher
Deckel Controllergehäuse	M4	2,5	22	
Schutzleiteranschluss	M4	2,5	22	
Netzanschlussklemmen *	M3	0,6	5	
Klemmen Relais und Steue- rung	M3	0,6	5	
Befestigung Zusatzmodul	M4	1,3	11	
Klemmen Zusatzmodul	M2	0,24	2,2	

^{*} Angabe für Ausführungen ohne Federkraftklemmen

Max. Anschlussquerschnitte der Klemmen

Netzanschluss: PE, L1, N bzw. PE, L1, L2, L3	max. 2,5 mm ² bzw. AWG12
Anschluss Steuerung: +24 V, +10 V, GND, D1, E1, K1	max. 1,5 mm ² bzw. AWG16
Zusatzmodule:	1,5 mm ² (0,75 mm ² mit Adernendhülse) bzw. AWG16

UL: Hinweis zu Kabeleinführungen

Gemäß UL sind die angebrachten Verschlussschrauben (aus Kunststoff) für Transportzwecke zulässig.

Gemäß UL können die beiliegenden Kabelverschraubungen ohne Installationsrohre verwendet werden, wenn es sich um eine Anlage nach **NFPA79** handelt.

5.4 EMV-gerechte Installation

5.4.1 Oberschwingungsströme bei 3 ~ Typen

Gemäß EN 61000-3-2 sind diese Geräte als "professionelle" Geräte einzustufen. Der Anschluss an eine Niederspannungsversorgung (öffentliche Netze) ist erlaubt, soweit dies mit dem jeweils zuständigen Energieversorgungsunternehmen geklärt wurde.

5.4.2 Steuerleitungen

Um Einstreuungen zu vermeiden, muss auf ausreichenden Abstand zwischen Netz- und Steuerleitungen geachtet werden. Die Länge der Steuerleitungen darf max. 30 m betragen, ab 20 m müssen diese geschirmt sein! Bei Verwendung einer geschirmten Leitung muss der Schirm einseitig, d. h. nur an der Signalquelle mit dem Schutzleiter verbunden werden (so kurz und induktionsarm wie möglich!).

5.5 Netzanschluss

5.5.1 Netzspannung

Gefahr durch elektrischen Strom

- Es muss unbedingt darauf geachtet werden, dass die Netzspannung mit der Angabe auf dem Leistungsschild übereinstimmt und innerhalb der zulässigen Toleranzangaben liegt (@ Technische Daten).
- Zwischen dem Netzanschluss des Gerätes und dem Schutzleiter "PE", ist in keinem Fall eine höhere Spannung zulässig als die angegebene Netzspannung des Gerätes!
- DC Versorgung nicht UL zugelassen!

Bei 1 ~ Ventilatortypen

Netzanschluss an: PE, L1 und N.

Alternativ ist eine Versorgung mit Gleichspannung möglich (© Technische Daten). Auf Polarität an "L1" und "N" muss nicht geachtet werden.

Achtung!

Damit die Begrenzung des Einschaltstromes aktiv wird, muss nach Abschaltung der Netzspannung eine Wartezeit von mindestens 90 Sekunden vor dem erneuten Wiedereinschalten eingehalten werden!

Bei 3 ~ Ventilatortypen

Netzanschluss an: PE, L1, L2 und L3.

Alternativ ist eine Versorgung mit Gleichspannung möglich (Technische Daten). Anschluss an zwei beliebigen Klemmen von "L1", "L2" und "L3", auf Polarität muss nicht geachtet werden.

5.5.2 Erforderliche Qualitätsmerkmale der Netzspannung

Gefahr durch elektrischen Strom

Die Netzspannung muss den Qualitätsmerkmalen der EN 50160 und den definierten Normspannungen der IEC 60038 entsprechen!

5.5.3 Leitungsschutzsicherung

Die Absicherung für den Netzanschluss muss abhängig von der verwendeten Leitung, der Verlegeart, den Betriebsbedingungen und gemäß den vor Ort geltenden Normen erfolgen. Die Angabe für die maximal zulässige Vorsicherung des Gerätes muss dabei unbedingt beachtet werden (siehe Technische Daten).

Mögliche Komponenten für den Leitungsschutz (Empfehlung):

- Schmelzsicherungen der Betriebsklasse "gG" (Ganzbereichs-Sicherungseinsätze für allgemeine Anwendungen gemäß EN 60269-1).
- Leitungsschutzschalter mit Charakteristik "C" (gemäß EN 60898-1).
- Motorschutzschalter mit Überlast- und Kurzschlussauslöser (gemäß EN 60947-4-1).
 Einstellung Überstromauslöser auf maximal zulässigen Strom der Leitung.

5.5.4 UL: Kurzschlussschutz für Stromabzweig (UL508C)

Gefahr durch elektrischen Strom

Diese Einrichtung zur Leistungssteuerung ist für den Anschluss an Stromkreisen geeignet, die nicht mehr als 100 kA symmetrischen Stromeffektivwert liefern können. Die Sicherungen für den Kurzschlussschutz müssen den Anforderungen der UL248 entsprechen (weitere Informationen Montageanleitung / Technische Daten).

5.5.5 Einsatz im IT-System

Gefahr durch elektrischen Strom

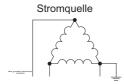
- Im IT-System ist der Sternpunkt der Spannungsversorgung nicht geerdet; bei einem Kurzschluss zwischen einer Phase (z. B. "L1") und Schutzleiter "PE" liegt der Schutzleiter auf Phasen-Potenzial.
- Zwischen dem Netzanschluss des Gerätes und dem Schutzleiter "PE", ist in keinem Fall eine höhere Spannung zulässig als die angegebene Netzspannung des Gerätes!

Bei 1 ~ Ventilatortypen

1 ~ Typen können in Standardausführung im IT-System eingesetzt werden. In 3 ~ IT-Systemen jedoch nur, wenn auch bei Erdschluss einer Netzphase die vom Gerät nicht benutzt wird, keine höhere Spannung zum "PE" auftreten kann als die angegebene Netzspannung des Gerätes (von keinem der beiden Versorgungsanschlüsse). Um einen störungsfreien Betrieb am IT-System zu gewährleisten, muss das "GND" Potenzial der Steueranschlüsse mit dem Schutzleiterpotenzial verbunden werden. Als Folge dieser Verbindung muss für die Steueranschlüsse beachtet werden (Ausnahme potenzialfreie Relaiskontakte):

- Nur mit Leitungen, die für Netzspannung und Umgebung geeignet sind, anschließen.
- 2. Nur über geeignete Trennverstärker anschließen.

Bei 3 ~ Ventilatortypen


 $3 \sim$ Typen sind in der hier beschriebenen Ausführung für den Einsatz im IT-System geeignet!

Zur Reduzierung von Funkstörspannungen werden zwischen Gehäusepotenzial und Zwischenkreis Kapazitäten eingesetzt. Bei der Auswahl des Isolationsüberwachungsgerätes ist dies unbedingt zu beachten!

5.5.6 Einsatz im geerdeten Dreieck-System

Bei der Geräteauswahl muss unbedingt darauf geachtet werden, dass ein Betrieb an der vorliegenden Netzform zulässig ist.



In Dreieck-System mit geerdeter Netzphase ist die maximale Spannung zwischen einem Außenleiter und dem Schutzleiter so hoch wie die Spannung zwischen zwei Außenleitern.

Bei den hier beschriebenen ECblue Ausführungen ist zwischen Netzanschluss und dem Schutzleiter "PE" maximal die angegebene Netzspannung zulässig (© Technische Daten), somit sind diese für den Einsatz im geerdeten Dreieck-System geeignet!

5.6 Anlagen mit Fehlerstrom-Schutzschalter

Bei 1 ~ Ventilatortypen

Für eine möglichst hohe Betriebssicherheit, empfehlen wir beim Einsatz eines Fehlerstrom-Schutzschalters (Typ A) einen Auslösestrom von 300 mA.

Gefahr durch elektrischen Strom

Ausnahme: Allstromsensitive Fehlerstrom-Schutzschalter am 3 ~ 230 V Netz Beim Anschluss des Gerätes zwischen zwei Außenleitern müssen "allstromsensitive" Fehlerstrom-Schutzschalter eingesetzt werden (© EN 50 178, Art. 5.2).

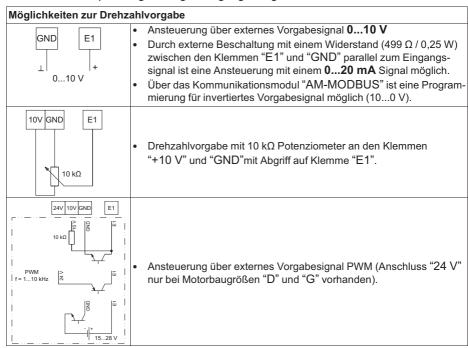
Bei 3 ~ Ventilatortypen

Gefahr durch elektrischen Strom

Beim Einsatz von Fehlerstrom-Schutzschaltungen ist zu beachten, dass diese "allstromsensitiv" sein müssen. Andere Fehlerstrom-Schutzschalter dürfen nach EN 50 178, Art. 5.2. nicht eingesetzt werden. Für eine möglichst hohe Betriebssicherheit empfehlen wir beim Einsatz eines Fehlerstrom-Schutzschalters einen Auslösestrom von 300 mA.

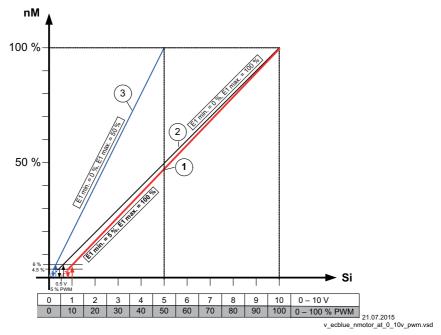
5.7 Motorschutz

Integrierter Überlastschutz, vorgeschaltetes Motorschutzgerät nicht erforderlich (max. Vorsicherung siehe Technische Daten).


5.8 Analog Eingang "E1" zur Vorgabe der Drehzahl

Das Gerät besitzt einen analog Eingang zur Vorgabe der Motordrehzahl. Anschluss "E1" / GND (Analog In 1).

Gefahr durch elektrischen Strom


- Auf richtige Polarität muss geachtet werden!
- Niemals Netzspannung am Signaleingang anlegen!

Der Motor startet immer mit mindestens 6 % der Bemessungsdrehzahl und stoppt unter 4,5 % der Bemessungsdrehzahl (vorausgesetzt die Einstellung "Min. Drehzahl" beträgt "0" rpm © Zusatzmodule).

Mit den Einstellungen "E1 min." und "E1 max." (Zusatzmodule) ist eine Anpassung der Vorgabesignal / Drehzahlkennlinie möglich, z. B. für Vorgabesignal: 0...5 V, 2...10V.

Diagramm Vorgabesignal und Motordrehzahl

nM Motordrehzahl

100 % Bemessungsdrehzahl

6 % Höhe Drehzahl Start

4,5 % Höhe Drehzahl Stopp

0.5 V / 5 % PWM Startwert Analogeingang (Werkseinstellung)

Si Drehzahlvorgabesignal 0...10 V / 0...100 % PWM

 Werkseinstellung: E1 min. = 5 %, E1 max. = 100 %

 0,5...10 V ≜ 0...100 % Drehzahlvorgabe

 D. h. bei einem Vorgabesignal von ca. 1 V startet der Motor mit 6 % der Bemessungsdrehzahl.

 2

 Beispiel: E1 min. = 0 %, E1 max. = 100 %

 0...10 V ≜ 0...100 % Drehzahlvorgabe

 3

 Beispiel: E1 min. = 0 %, E1 max. = 50 %

 0...5 V ≜ 0...100 % Drehzahlvorgabe

5.9 Ausgangsspannung "10 V"

Spannungsversorgung z. B. zur Drehzahlvorgabe über ein externes Potenziometer (PELV-Stromquelle nach EN 60204-1).

Anschluss: "10 V" - "GND" (max. Belastung © Technische Daten und Anschlussplan). Ausgänge mehrerer Geräte dürfen nicht miteinander verbunden werden!

5.10 Spannungsversorgung für externe Geräte (+24 V, GND)

Für externe Geräte ist eine Spannungsversorgung integriert (PELV-Stromquelle nach EN 60204-1). Klemme "+ 24 V" (FTechnische Daten).

Bei einer Überlastung bzw. einem Kurzschluss (24 V - GND) wird die Steuerspannung (und somit das Gerät) abgeschaltet. Automatische Einschaltung nach Beheben der Fehlerursache.

Ausgänge mehrerer Geräte dürfen nicht miteinander verbunden werden!

5.11 Digital Eingang "D1" zur Freigabe (Gerät EIN / AUS)

Elektronische Abschaltung über potenzialfreien Kontakt an Klemmen "D1" - "+24V" (Eingangswiderstand und Spannungsbereich © Technische Daten). Funktion bei Werkseinstellung für "D1":

- Gerät "EIN" bei geschlossenem Kontakt.
- Gerät "AUS" bei geöffnetem Kontakt.

 Das Relais "K1" bleibt angezogen, Anschlüsse 11 14 gebrückt.

 Status Out mit Blinkcode: 11 (Diagnose / Störungen).

Gefahr durch elektrischen Strom

- Bei Fernsteuerung erfolgt im ausgeschalteten Zustand keine Freischaltung (keine Potenzialtrennung nach VBG4 §6)!
- Niemals Netzspannung an den digitalen Eingängen anlegen!

5.12 Relaisausgang "K1" zur Störmeldung

Eine externe Störmeldung ist über den potenzialfreien Kontakt des eingebauten Relais möglich (max. Kontaktbelastung Technische Daten und Anschlussplan). Funktion bei Werkseinstellung für "K1":

- Bei Betrieb zieht das Relais an, d. h. die Anschlüsse "11" und "14" sind gebrückt. Bei Störung fällt das Relais ab (Diagnose / Störungen).
- Bei Abschaltung über die Freigabe (D1 = Digital In 1) bleibt das Relais angezogen.

Information

Nach dem Einschalten der Netzspannung ist eine Initialisierungszeit von maximal 7,5 Sekunden erforderlich, bis die Elektronik des Gerätes betriebsbereit ist. Danach ist eine zuverlässige Statusmeldung möglich. Wenn keine Störung erkannt wird, zieht das Relais nach der Initialisierungszeit ein.

Da sowohl Netzspannungsschwankungen und Umgebungsbedingungen auf die Initialisierungszeit Einfluss haben, könnte im Einzelfall abweichende Verzögerung eintreten.

5.13 Potenzial der Steuerspannungsanschlüsse

Die Anschlüsse der Steuerspannung (< 50 V) beziehen sich auf das gemeinsame GND Potenzial (Ausnahme: Relaiskontakte sind potenzialfrei). Zwischen den Anschlüssen der Steuerspannung und dem Schutzleiter besteht eine Potenzialtrennung. Es muss sichergestellt sein, dass die maximale Fremdspannung an den Anschlüssen der Steuerspannung 50 V nicht überschreiten kann (zwischen Klemmen "GND" und Schutzleiter "PE"). Bei Bedarf kann eine Verbindung zum Schutzleiterpotenzial hergestellt werden, Brücke zwischen "GND"- Klemme und dem "PE"- Anschluss (Klemme für Abschirmung) anbringen.

5.14 Option Zusatzmodule

Bei Bedarf kann ein Zusatzmodul im dafür vorgesehenen Steckplatz nachgerüstet werden (Montage @ Betriebsanleitung der Zusatzmodule).

Das Angebot an Zusatzmodulen wird ständig erweitert und an die Marktanforderungen angepasst. Die aktuell verfügbaren Zusatzmodule können bei ZIEHL-ABEGG erfragt werden.

Beispiele für aktuell verfügbare Zusatzmodule

Тур	ArtNr.	Funktion		
AM-MODBUS	349045	Kommunikationsmodul		
AM-MODBUS-W	349050	Zur Einbindung des Gerätes in ein MODBUS Netzwerk. Die Adressierung der Teilnehmer kann über einen zusätzlichen Anschluss automatisch erfolgen.		
		Über das Handterminal Typ A-G-247NW kann mit dem Gerät kommuniziert werden. Verbindung leitungsgebunden über die MODBUS Schnittstelle oder drahtlos über Funk (AM-MODBUS- W).		
AM-PREMIUM	349046	Universal Regelmodul		
AM-PREMIUM-W	349051	Durch Aufstecken des Moduls "AM-PREMIUM" wird das Gerät zum Universalregler, Sensoren können direkt angeschlossen werden.		
		Über das Handterminal Typ A-G-247NW kann mit dem Gerät kommuniziert werden. Verbindung leitungsgebunden über die MODBUS Schnittstelle oder drahtlos über Funk (AM-PREMIUM- W).		
AM-CAN-OPEN	349064	CANOPEN Modul		
		Zur Einbindung des Gerätes in ein CANOPEN Netzwerk.		
AM-LON	349049	LON Modul		
		Zur Einbindung des Gerätes in ein LON Netzwerk.		
AM-PROFIBUS	349063	PROFIBUS Modul		
		Zur Einbindung des Gerätes in ein PROFIBUS Netzwerk.		
AM-ETHERCAT	349071	ETHERCAT Modul		
		Zur Einbindung des Gerätes in ein ETHERCAT Netzwerk.		
AM-PROFINET	349072	AM-PROFINET Modul		
		Zur Einbindung des Gerätes in ein PROFINET Netzwerk.		

6 Inbetriebnahme

6.1 Voraussetzungen für die Inbetriebnahme

Achtung!

- Bei der Inbetriebnahme k\u00f6nnen unerwartete und gef\u00e4hrliche Zust\u00e4nde in der gesamten Anlage aufgrund von fehlerhaften Einstellungen, defekten Komponenten oder falschem elektrischen Anschluss auftreten. Alle Personen und Gegenst\u00e4nde m\u00fcssen aus dem Gefahrenbereich entfernt werden.
- Nehmen Sie den Ventilator erst In Betrieb, wenn Sie alle Sicherheitshinweise (DIN EN 50110, IEC 364) überprüft haben, der Ventilator sich außerhalb der Reichweite befindet (DIN EN ISO 13857) und eine Gefährdung ausgeschlossen ist.

Vor Erstinbetriebnahme prüfen:

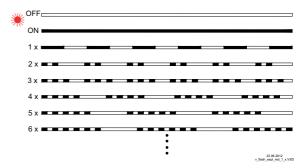
- 1. Einbau und elektrische Installation fachgerecht abgeschlossen?
- Eventuell vorhandene Montagerückstände und Fremdkörper aus Anschluss- und Ventilatorraum entfernt?
- 3. Sicherheitseinrichtungen falls erforderlich montiert (EN ISO 13857)?
- 4. Das Ventilatorlaufrad befindet sich außerhalb der Reichweite?
- Sind die zur Einbaulage passenden Kondenswasserlöcher (soweit vorhanden) geöffnet bzw. geschlossen?
- 6. Stimmen Anschlussdaten mit Daten auf Leistungsschild überein?

Bei der Inbetriebnahme prüfen:

- Drehrichtung kontrollieren (Drehrichtungspfeil auf Ventilatorflügel, Laufradbodenscheibe bzw. saugseitigem Tragblech oder Leistungsschild).
- 2. Auf ruhigen schwingungsarmen Lauf achten. Starke Schwingungen durch unruhigen Lauf (Unwucht), z. B. durch Transportschaden oder unsachgemäße Handhabung, können zum Ausfall führen.
- 3. A-bewerteter Schallleistungspegel größer 80 dB(A) möglich, siehe Produktkatalog.
- 4. Falls Resonanzschwingungen auftreten, besteht die Möglichkeit bestimmte Drehzahlbereiche auszublenden (Motor Setup bzw. Zusatzmodul).
- 5. Ventilatoren der ZIEHL-ABEGG SE sind im Auslieferungszustand nach DIN ISO 21940-11 für die entsprechende Ventilatorkategorie nach ISO 14694 ausgewuchtet. Prüfen Sie den Ventilator nach dem Einbau auf mechanische Schwingungen. Werden die Grenzwerte der entsprechenden Ventilatorkategorie bei Inbetriebnahme überschritten, müssen Sie die Motor-/Laufradeinheit von Fachpersonal überprüfen und gegebenenfalls nachwuchten lassen, bevor ein Dauerbetrieb zulässig ist.

7 Diagnose / Störungen

7.1 Störungsbeseitigung


Fehlerart	Mögliche Ursache	Abhilfemaßnahmen
Ventilator dreht nicht (mehr)	Ausfall Netzspannung Ausfall einer Phase Unter- oder Überspannung	Netzspannung prüfen
	Erdschluss	Motoranschluss und Netzspannung prüfen
	Wicklungsschluss	Ventilator austauschen
	Thermischer Motorschutz hat ausgelöst (Motor ist	Auf freie Luftwege prüfen; gegebenenfalls Fremdkörper entfernen
	überhitzt)	siehe "Laufrad ist blockiert oder verschmutzt"
		Temperatur der Zuluft prüfen
		Spannung prüfen
	Laufrad ist blockiert oder verschmutzt	- Motor spannungsfrei schalten und gegen Wiederein- schalten sichern
		- Spannungsfreiheit prüfen
		- Schutzgitter entfernen
		 Fremdkörper oder Verschmutzung entfernen Schutzgitter wieder montieren
		- Weiteres Vorgehen wie in Kapitel "Inbetriebnahme"
Ventilator läuft	Temperatur zu niedrig für La-	Lager mit Kältefettung einsetzen
nicht an	gerfett	Lager Hill Natterettung emsetzen
	Luftstrom in falscher Rich-	Luftstrom prüfen
	tung (Motor dreht mit hoher Drehzahl falsch herum)	(siehe Verhalten bei Drehung durch Luftstrom in rückwärtiger Richtung)
	siehe "Ventilator dreht nicht"	
Ventilator dreht zu langsam	Laufrad / Flügel schleift / streift	Gegebenenfalls Fremdkörper / Schmutz im Ventilator beseitigen
	Aktives Temperaturmanagement wirksam	Auf freie Luftwege prüfen; gegebenenfalls Fremdkörper entfernen
	(Motor oder Elektronik über-	siehe "Laufrad ist blockiert oder verschmutzt"
	hitzt)	Temperatur der Zuluft prüfen
		Einbauraum prüfen (Luftgeschwindigkeit über Kühlkörper)
Volumenstrom	Ventilator dreht zu langsam	siehe "Ventilator dreht zu langsam"
zu gering	Luftwege blockiert	Auf freie Luftwege prüfen (Zu- / Abluftklappen, Filter)
		siehe "Laufrad ist blockiert oder verschmutzt"
	Druckverlust anders als projektiert	Ventilatorauswahl prüfen
Vibrationen	Unwucht	Flügel / Schaufeln auf Schäden, Verschmutzung oder Vereisung prüfen (siehe "Laufrad ist blockiert oder verschmutzt")

Fehlerart	Mögliche Ursache	Abhilfemaßnahmen
	Keine oder falsche Schwin- gungsdämpfer (nur bei Ra- dial)	Richtige Schwingungsdämpfer einbauen
Ungewöhnliche	Lager schadhaft / verschlis-	Lager wechseln
Geräusche	sen	Bei Motorbaugröße 055"(Z" / "B" bei Querstrom) Ventilator tauschen.
	Laufrad / Flügel schleift / streift	Gegebenenfalls Fremdkörper / Schmutz im Ventilator beseitigen (siehe "Laufrad ist blockiert oder verschmutzt")
	Betrieb jenseits Abreiss- punkt (bei Axialventilatoren)	Auf freie Luftwege prüfen (Zu- / Abluftklappen, Filter)
	Überdeckung an Düse falsch	Einbauhinweise beachten
	(bei Radialventilatoren)	

7.2 Status Out mit Blinkcode

Sichtfenster für Status LED bei Ausführung mit Kunststoff-

Beschreibung gültig ab Softwareversion 13.31

LED Code	Relais K1 *	Ursache	Reaktion des Controllers
		Erklärung	Behebung
OFF	abgefallen, 11 - 14 unterbrochen	Keine Netzspannung	Netzspannung vorhanden? Gerät schaltet Aus und bei Span- nungswiederkehr automatisch wie- der EIN
ON	angezogen, 11 - 14 gebrückt	Normalbetrieb ohne Störung	
1 x	angezogen, 11 - 14 gebrückt	Keine Freigabe = OFF Klemmen "D1" - "24 V" (Digital In 1) nicht gebrückt.	Abschaltung über externen Kontakt (② Digital Eingang).
2 x	angezogen, 11 - 14 gebrückt	Aktives Temperaturmanagement Um das Gerät vor Schäden durch zu hohe Innentemperaturen zu schüt- zen, verfügt es über ein aktives Tem- peraturmanagement. Bei einem Temperaturanstieg über die festge- legten Grenzwerte wird die Aus- steuerung linear reduziert. Um bei reduziertem Betrieb auf Grund zu hoher Innentemperatur ein externes Abschalten der kompletten Anlage (bei diesem für den Controller zuläs- sigen Betrieb) zu verhindern, erfolgt keine Störmeldung über das Relais.	Bei sinkender Temperatur steigt die Aussteuerung wieder linear an. Kontrolle der Kühlung des Control- lers
3 x	abgefallen, 11 - 14 unterbrochen	HALL-IC Falsches Signal von Hall-ICs, Fehler in der Kommutierung. Interne Steckverbindung fehlerhaft.	EC-Controller schaltet ab und nicht wieder ein. Reset durch Unterbrechen der Netzspannung erforderlich.

LED Code	Relais K1 *	Ursache	Reaktion des Controllers
		Erklärung	Behebung
4 x	abgefallen, 11 - 14 unterbrochen	Phasenausfall (nur bei 3 ~ Typen) Der Controller verfügt über eine ein- gebaute Phasenüberwachung, bei Netzstörung (Ausfall einer Sicherung oder Netzphase) schaltet das Gerät zeitverzögert (ca. 200 ms) aus. Funktion nur bei ausreichender Be- lastung des Controllers gegeben.	Nach einer Abschaltung erfolgt bei ausreichender Spannungsversor- gung nach ca. 15 sec. ein Anlaufver- such. Dies erfolgt solange bis wieder alle 3 Netzphasen vorhanden sind. Netzversorgung prüfen
5 x	abgefallen, 11 - 14 unterbrochen	Motor blockiert Wird bei vorhandener Kommutierung 8 sec. lang keine Drehzahl > 0 ge- messen, wird der Fehler "Motor Blo- ckiert" ausgelöst.	EC-Controller schaltet ab, erneuter Anlaufversuch nach ca. 2,5 sec. Endgültige Abschaltung nach fünf vergeblichen Anlaufversuchen. Dann Reset durch Unterbrechen der Netzspannung erforderlich. Prüfen, ob Motor frei drehbar.
6 x	abgefallen, 11 - 14 unterbrochen	IGBT Fault Erdschluss oder Kurzschluss der Motorwicklung.	EC-Controller schaltet ab, erneuter Anlaufversuch nach ca. 60 sec. Code 9. Endgültige Abschaltung, wenn nach zweitem Startversuch innerhalb 60 sec. erneute Fehlererkennung. Dann Reset durch Unterbrechen der Netzspannung erforderlich.
7 x	abgefallen, 11 - 14 unterbrochen	Zwischenkreis Unterspannung Wenn die Zwischenkreisspannung unter den festgelegten Grenzwert absinkt, erfolgt eine Abschaltung.	Steigt die Zwischenkreisspannung wieder über den Grenzwert an, so erfolgt ein automatischer Anlaufversuch. Bleibt die Zwischenkreisspannung länger als 75 sec. unter dem Grenzwert, so erfolgt eine Fehlermeldung.
8 x	abgefallen, 11 - 14 unterbrochen	Zwischenkreis Überspannung Wenn die Zwischenkreisspannung über die festgelegten Grenzwerte ansteigt erfolgt eine Abschaltung des Motors. Ursache zu hohe Eingangsspan- nung oder generatorischer Motorbe- trieb.	Sinkt die Zwischenkreisspannung wieder unter den Grenzwert, so erfolgt ein automatischer Anlaufversuch. Bleibt die Zwischenkreisspannung länger als 75 sec. über dem Grenzwert, so erfolgt eine Fehlermeldung.
9 x	angezogen, 11 - 14 gebrückt	IGBT Abkühlpause	IGBT Abkühlpause für ca. 60 sec. Endgültige Abschaltung nach 2 Ab- kühlpausen (இ) Code 6.

LED Code	Relais K1 *	Ursache	Reaktion des Controllers
		Erklärung	Behebung
11 x	abgefallen, 11 - 14 unterbrochen	Fehler Motorstart Wenn ein Startbefehl anliegt (Freigabe vorhanden und Sollwert > 0) und der Motor sich nicht innerhalb von 5 Minuten in die richtige Richtung zu drehen beginnt, so erfolgt eine Fehlermeldung.	Ist es möglich den Motor nach der Fehlermeldung in die Solldrehrichtung zu starten, so erlischt die Fehlermeldung. Nach einer zwischenzeitlichen Spannungsunterbrechung beginnt die Zeitmessung bis zur Abschaltung von vorne. Prüfen, ob Motor frei drehbar. Prüfen, ob Ventilator durch Luftstrom rückwärts angetrieben wird (Verhalten bei Drehung durch Luftstrom in rückwärtiger Richtung).
12 x	abgefallen, 11 - 14 unterbrochen	Netzspannung zu niedrig Wenn die Zwischenkreisspannung unter den festgelegten Grenzwert absinkt, erfolgt eine Abschaltung.	Steigt die Netzspannung wieder über den Grenzwert an, so erfolgt ein au- tomatischer Anlaufversuch. Bleibt die Netzspannung länger als 75 sec. unter dem Grenzwert, so er- folgt eine Fehlermeldung.
13 x	abgefallen, 11 - 14 unterbrochen	Netzspannung zu hoch Ursache zu hohe Eingangsspan- nung Wenn die Netzspannung über die festgelegten Grenzwerte ansteigt er- folgt eine Abschaltung des Motors.	Sinkt die Netzspannung wieder unter den Grenzwert, so erfolgt ein auto- matischer Anlaufversuch. Bleibt die Netzspannung länger als 75 sec. über dem Grenzwert, so er- folgt eine Fehlermeldung.
14 x	abgefallen, 11 - 14 unterbrochen	Fehler Spitzenstrom Wenn der Motorstrom (auch kurzzeitig) über einen festgelegten Grenzwert ansteigt erfolgt eine Abschaltung.	Nach einer Abschaltung wartet der Controller eine Zeit von 5 sec. und unternimmt danach einen weiteren Anlaufversuch. Treten innerhalb 60 sec. in Folge weitere 5 Abschaltungen auf erfolgt eine endgültige Abschaltung mit Fehlermeldung. Wenn 60 sec. ohne weitere Abschaltung vergangen sind, wird der Zähler zurückgesetzt.
17 x	abgefallen, 11 - 14 unterbrochen	Temperaturalarm Überschreitung der max. zulässigen Innentemperatur.	Controller schaltet Motor ab. Automatischer Wiederanlauf nach Abkühlung. Kontrolle der Kühlung des Controllers

^{*} K1: bei werkseitig programmierter Funktion: Störmeldung nicht invertiert

7.3 Bremsfunktion und Verhalten bei Drehung durch Luftstrom

Bei anliegender Netzspannung, erteilter Freigabe und einem Vorgabesignal über "0", ist die Drehzahlregelung aktiv, dadurch ist die Drehzahl auch bei Lastschwankungen stabil.

Wenn der Motor bei anliegender Netzspannung nicht angesteuert wird, d. h. ohne Freigabe oder bei vorliegender Freigabe mit Vorgabesignal "0", wird die Bremsfunktion aktiv um den Motor bis zum Start anzuhalten (Haltebremsung).

- Wird die Netzspannung eingeschaltet, während der Ventilator rückwärts dreht (falsche Drehrichtung), wird dieser abgebremst und bei einem Vorgabesignal über "0" in die korrekte Drehrichtung gestartet. Um die Elektronik vor einem zu hohem Bremsstrom zu schützen, ist diese Funktion teilweise (ventilatorabhängig) nur bis zu einer bestimmten Höhe der Drehzahl möglich.
- Die Bremsfunktion wird auch aktiv, um den Ventilator zum Stillstand zu bringen, wenn dieser in korrekter Drehrichtung mit einer Drehzahl unter 100 min⁻¹ (ohne Ansteuerung) angetrieben wird. Bei Drehzahlen über 100 min⁻¹ greift die Motorsteuerung nicht ein
- Bei einem Antrieb in korrekter Drehrichtung und erteilter Freigabe mit einem Vorgabesignal über "0", wird der Motor gestartet während sich der Ventilator dreht.

Verhalten bei starkem Antrieb in rückwärtige Richtung (z. B. Sog)

Die Bremswirkung bei anliegender Netzspannung ist begrenzt, starke rückwärts wirkende Kräfte können trotz Haltebremsung zu einer Drehbewegung führen.

Ab einem gewissen Niveau (ventilatorabhängig) ist es nicht mehr möglich, den Ventilator in die korrekte Drehrichtung zu starten (=> Meldung: Fehler Motorstart). Es folgen weitere Startversuche, gelingt der Start erlischt die Fehlermeldung.

Information

- Netzspannung nicht abschalten, damit die Bremsfunktion eine Drehung des Ventilators in rückwärtige (falsche) Richtung verhindern kann und ein sicherer Start möglich ist.
- Wenn die Applikation ein sicheres Starten nach dem Einschalten der Netzspannung erfordert, muss ein zu starker Luftstrom (Sogwirkung) in rückwärtige Richtung, durch geeignete Maßnahmen verhindert werden.
- Es sind Sondereinstellungen möglich, durch die es Abweichungen zur vorausgegangenen Funktionsbeschreibung geben kann.

8 Servicearbeiten

8.1 Instandhaltung / Wartung

Achtung!

- Beachten Sie vor Arbeiten am Ventilator unbedingt das Kapitel Sicherheitshinweise!
- Vor Arbeiten am Ventilator ist dieser von der Spannung zu trennen und gegen Wiedereinschalten zu sichern!
- Keine Wartungsarbeiten am laufenden Ventilator!
- Instandsetzungsarbeiten nur durch ausgebildetes Fachpersonal vornehmen lassen.
- Festgestellte Mängel an elektrischen Anlagen / Baugruppen / Betriebsmitteln müssen unverzüglich behoben werden. Besteht bis dahin eine akute Gefahr, so darf das Gerät / die Anlage in dem mangelhaften Zustand nicht betrieben werden.
- Bei der Handhabung Sicherheitsschuhe und Schutzhandschuhe benutzen!
- Bei allen Instandhaltungs- und Wartungsarbeiten Sicherheits- und Arbeitsvorschriften (EN 50 110, IEC 364) beachten.
- Sicherungen dürfen nur ersetzt und nicht repariert oder überbrückt werden. Die Angaben für die maximale Vorsicherung sind unbedingt zu beachten (siehe Technische Daten). Nur die im elektrischen Schaltplan vorgesehenen Sicherungen einsetzen.
- Durch generatorischen Betrieb können gefährliche Spannungen auftreten (siehe Sicherheitshinweise)!
- Halten Sie die Luftwege des Ventilators frei Gefahr durch herausfliegende Gegenstände!
- Achten Sie auf schwingungsarmen Lauf!
- Je nach Einsatzbereich und Fördermedium unterliegt das Laufrad einem natürlichen Verschleiß. Ablagerungen am Laufrad können zu Unwucht und damit zu Schäden (Gefahr eines Dauerbruchs) führen. Das Laufrad kann bersten!
- Bei Förderung stark aggressiver Medien, für die das Produkt nicht geeignet ist, besteht durch massive Korrosion die Gefahr eines Laufradbruchs. Derartig korrodierte Räder sind unverzüglich zu ersetzen.
- Ablagerungen am Motor insbesondere an den Kühlrippen und in Vertiefungen am Rotor – können zu verminderter Kühlung und einem vorzeitigen Abschalten des Motors führen. Ablagerungen daher rechtzeitig entfernen (siehe Kapitel: Reinigung).
- Wartungsintervalle nach Verschmutzungsgrad des Laufrades!
- Überprüfen Sie den Ventilator in regelmäßigen Abständen (Empfehlung: alle 6 Monate) auf mechanische Schwingungen. Beachten Sie die in der ISO 14694 angegebenen Grenzwerte und führen Sie bei Überschreiten Abstellmaßnahmen durch (z. B. Nachwuchten durch Fachpersonal).
- Laufrad, insbesondere Schweißnähte auf eventuelle Rissbildung überprüfen.
- Instandsetzung z. B. durch Schweißen ist verboten!
- Aufgeschraubte Räder bzw. Flügel dürfen nur durch autorisierte Personen der ZIEHL-ABEGG SE getauscht werden, für Schäden aufgrund unsachgemäßer Reparatur haftet der Hersteller nicht.
- Der Ventilator bzw. Motor ist durch Verwendung von Kugellagern mit "Lebensdauerschmierung" wartungsfrei. Nach Beendigung der Fettgebrauchsdauer (siehe Technische Daten) ist ein Lageraustausch erforderlich. Die Fettgebrauchsdauer kann sich gegenüber dem dort genannten theoretischen Wert (F_{10h}) verringern, wenn Be-

triebsbedingungen wie Vibrationen, Feuchtigkeit oder Schmutz im Lager, ungünstige Regelungsarten etc. gegeben sind. Wenden Sie sich zum Lagertausch, sowie bei allen anderen Schäden (z. B. an Wicklung oder Elektronik) an unsere Serviceabteilung.

- Regelmäßige Inspektion, gegebenenfalls Reinigung der Ablagerungen ist erforderlich, um Unwucht und Zusetzen der Kondenswasserbohrungen durch Verschmutzung zu vermeiden.
- Beim Öffnen der Kabelverschraubungen am Ventilator / Motor den Zustand der Verschraubungen und Dichtungen überprüfen. Defekte oder spröde Verschraubungen und Dichtungen unbedingt erneuern.

Information

Rückmeldenummer für Rückfragen oder im Servicefall siehe Leistungsschild. Wenn das Leistungsschild nicht mehr lesbar sein sollte, die zusätzlich eingravierte Rückmeldenummer angeben (abhängig von Motorbauart vorhanden). Je nach Motorbaugröße befindet sich diese unter dem aufgeklebten Leistungsschild oder auf dem Statorflansch (bei Außenläufermotoren).

8.2 Reinigung

Gefahr durch elektrischen Strom

Der Motor ist von der Spannung zu trennen und gegen Wiedereinschalten zu sichern!

Säubern Sie den Durchströmungsbereich des Ventilators.

Achtung!

- Zur Reinigung dürfen keine aggressiven, lacklösenden Reinigungsmittel verwendet werden.
- Es ist darauf zu achten, dass kein Wasser in das Motorinnere und die Elektronik (z. B. durch direkten Kontakt mit Dichtungen oder Motoröffnungen) gelangt, Schutzart (IP) beachten.
- Die zur Einbaulage passenden Kondenswasserbohrungen (falls vorhanden) müssen auf freien Durchgang geprüft werden.
- Bei nichtsachgemäßen Reinigungsarbeiten wird bei unlackierten / lackierten Ventilatoren keine Gewährleistung bezüglich Korrosionsbildung / Lackhaftung übernommen.
- Um Feuchtigkeitsansammlung im Motor zu vermeiden, muss der Ventilator vor dem Reinigungsprozess mindestens 1 Stunde mit 80 bis 100 % der maximalen Drehzahl betrieben werden!
- Nach dem Reinigungsprozess muss der Ventilator zum Trocknen mindestens 2 Stunden mit 80 bis 100 % der maximalen Drehzahl betrieben werden!

9 Anhang

9.1 Technische Daten

3.1 Technische Date	•		
Netzspannung* (② Leistungsschild)	AC: 1 ~ 200277 V (+/- 10 %), 50/60 Hz	DC: 280400 V (+/- 10 %)	
	AC: 3 ~ 200240 V (+/- 10 %), 50/60 Hz	DC: 280340 V (+/- 10 %)	
	AC: 3 ~ 380480 V (+/- 10 %), 50/60 Hz	DC: 500680 V (+/- 10 %)	
	AC: 3 ~ 200480 V (+/- 10 %), 50/60 Hz	DC: 280680 V (+/- 10 %)	
		DC Versorgung nicht UL zugelassen!	
Maximale Vorsicherung**	16 A für alle Typen 1 ~ und 3 ~		
Max. Grenzlastintegral des Einschaltstromes ca.	1,22 A ² s		
Taktfrequenz	16 kHz		
Eingangswiderstand für Drehzahlvorgabesignal	$R_i > 100 \text{ k}\Omega$		
Spezifikation Vorgabesignal PWM	Spannung: 1528 VDC Taktfrequenz: 110 kHz Tastverhältnis: 0100 %		
Spannungsversorgung für exter-	+10 V, I _{max} 10 mA (kurzschlussfest)		
ne Geräte	+24 V ±20 %, I _{max} 70 mA		
Digital Eingang "D1"	Eingangswiderstand: R_i ca. 4 k Ω		
	Spannungsbereich high Pegel: 1030 V DC		
	Spannungsbereich low Pegel: 04 V DC		
Zulässige minimale und maxi-	-3560 °C Leistungsschild (bis 70 °C ***)		
male Umgebungstemperatur für den Betrieb	Die für den jeweiligen Ventilator gültige minimale und maximale Umgebungstemperatur entnehmen Sie bitte der technischen Dokumentation des Produktes, diese kann gegebenenfalls von den genannten zulässigen Umgebungstemperaturen abweichen. Um Kondensation zu vermeiden muss der Antrieb für Wärmezufuhr kontinuierlich mit Strom versorgt werden, bei Unterbrechungen so, dass der Kondensationspunkt durch Abkühlung nicht auftritt.		
Zulässige Aufstellungshöhe	04000 m über N.N. ≤ 1000 m: keine Einschränkung		
	> 1000 m: max. zulässiger Eingangsstrom = Stromangabe Leistungs- schild minus 5 % / 1000 m		
	> 2000 m: max. zulässige Netzspannung = max. Spannungsangabe Leistungsschild minus 1,29 % / 100 m		
Zulässige relative Feuchte	Der Motor ist für eine rel. Luftfeuchte von 100 % bei Kontinentalklima ohne weitere Umwelteinflüsse freigegeben. Darüber hinausgehende Umgebungsbedingungen auf Anfrage.		
Zulässiger Temperaturbereich für Lagerung und Transport	-40+80 °C		

Elektromagnetische Verträglich-	Störaussendung gemäß EN 61000-6-3 (Wohnbereich)
keit für die Normspannungen 230 / 400 V nach IEC 60038	Störfestigkeit gemäß EN 61000-6-2 (Industriebereich)
Oberschwingungsströme	Bei 1 ~ Typen
	Aktive Leistungsfaktoranpassung für sinusförmige Stromaufnahme (PFC = Power - Factor - Controller), Oberschwingungsströme gemäß EN 61000-3-2 sind garantiert.
	Bei 3 ~ Typen
	Gemäß EN 61000-3-2 (Montageanleitung / Elektrische Installation / EMV-gerechte Installation / Oberschwingungsströme bei 3 ~ Typen).
Kontaktbelastung des internen Relais	AC 250 V 2 A
Max. Ableitstrom gemäß den definierten Netzwerken der EN 60990	< 3,5 mA
dB(A) Werte	Produktkatalog
Kugellager Fettgebrauchsdauer (F _{10h})	bei Standardanwendung ca. 30 - 40.000 h
Schutzart des Motors nach EN 60529	IP54

- * Bezüglich des Netzanschlusses sind diese Geräte laut der zugehörigen EN 61800-3 als Geräte der Kategorie "C2" einzuordnen. Die erhöhten Anforderungen an die Störaussendung > 2 kHz für Geräte der "C1" Kategorie werden zudem eingehalten.
- ** Max. Vorsicherung bauseits (Leitungsschutzsicherung) nach EN 60204-1 Klassifikation VDE0113 Teil 1 (siehe auch Montageanleitung / Elektrische Installation / Netzanschluss / Leitungsschutzsicherung).
- *** Die Aussteuerung wird über das aktive Temperaturmanagement linear reduziert, wenn interne Grenzwerte überschritten werden.

Für Motoren / Ventilatoren mit entsprechendem Prüfzeichen (Leistungsschild)				
Authorization: FILE No. UL 508c E213826				
	CULUS	Power Conversion Equipment 62BN		
Environment type rating: 3				

Für Motoren / Ventilatoren mit entsprechendem Prüfzeichen (@ Leistungsschild)				
Authorization:	FILE No. UL 508c E213826			
	c FN °us	Power Conversion Equipment 62BN		
Environment type rating: 3				

9.2 UL-Spezifikationen

9.2.1 UL: Bemessungsangaben

RATINGS:

Model	Input at 50 / 60 Hz	Output	Ambient Tempera- ture [C°]
	MK116		
MK 116-#I#.07.#A MK 116-#I#.11.#A	3x 380–480 Vac, 2500W, 4.0-3.2A	2400 W / 16kHz 4.7 A, 460Vac (rms)	40
	3x 380–480 Vac, 2500W, 3.2-3.6A	2350 W / 16kHz 4.4 A, 460Vac (rms)	60
	3x 380–480 Vac, 1560-1880W, 2.4A	1480-1780 W / 16kHz 2.3 A 460Vac (rms)	70
MK 116-#I#.07.#B MK 116-#I#.11.#B	3x 200–240 Vac,1900-2300W, 6.1A	1800-2175 W / 16kHz / 6.6 A215Vac (rms)	40
	3x 200–240 Vac, 1650-2000W, 5.4A	1550-1900 W / 16kHz / 5.7 A 215Vac (rms)	60
	3x 200–240 Vac, 1050-1300W, 3.9A	1000-1200 W / 16kHz / 3.7 A 215Vac (rms)	70
MK 116-#I#.07.#C MK 116-#I#.11.#C	1x 200–277 Vac, 1440W, 5.2A	1320 W / 16kHz 3.3 A 340Vac (rms)	40
	1x 200-277 Vac, 900W, 3.3A	830 W / 16kHz 2.3 A 340Vac (rms)	60
	1x 200–277 Vac, 750W, 2.7A	690 W / 16kHz 1.2 A, 340Vac (rms)	70
MK 116-#I#.07.#F MK 116-#I#.11.#F	3 x 380-480 Vac at 4000W, 6.15- 5.0A	3880W/16kHz, 436Vac (rms), 5.8A	60
	3x 380–480 Vac 3050W 4.1A	2960 W / 16 kHz 4.0 A, 422 Vac (rms)	70
MK 116-#I#.07.#G MK 116-#I#.11.#G	3x 200–240 Vac 3090W, 8.1 A	3000 W / 16 kHz 9.2 A, 218 Vac (rms)	40
	3x 200–240 Vac 2850W, 7.6 A	2770 W / 16 kHz 8,6 A, 218 Vac (rms	50
	3x 200–240 Vac 2670W, 7 A	2590 W / 16 kHz 8.1 A, 218 Vac (rms	60
	3x 200–240 Vac 2400W, 6.4 A	2330 W / 16 kHz 7.4 A, 218 Vac (rms)	70
MK 116-#I#.07.#H MK 116-#I#.11.#H	3x 200–480 Vac 1300-2500W, 4.0- 3.2A	2400 W / 16kHz 4.7 A, 460Vac (rms	40
	3x 200–480 Vac 1180-2500W, 3.2- 3.6A	2350 W / 16kHz 4.4 A, 460Vac (rms)	60
	3x 200–480 Vac 820-1880W, 2.4A	1780 W / 16kHz 2.3 A, 460Vac (rms)	70

Model	Input at 50 / 60 Hz	Output	Ambient Tempera- ture [C°]
MK 116-#I#.07.#I MK 116-#I#.11.#I	1x 100–130 Vac, 630 W, 4.9A	580 W / 16kHz 1.45 A 240Vac (rms)	40
	1x 100–130 Vac, 615 W, 4.7A	565 W / 16kHz 1.40 A 240Vac (rms)	50
	1x 100–130 Vac, 620W, 4.8A	570 W / 16kHz 1.40 A, 240Vac (rms)	60
	1x 100–130 Vac, 520 W, 4.0 A	470 W / 16kHz 1.20 A, 240Vac (rms)	70
	MK152		*
MK 152-#I#.11.#A MK 152-#I#.17.#A	3x 380–480 Vac 4100W, 6.6-5.2A	3950 W / 16kHz 7.2 A, 460Vac (rms)	50
MK 152-#I#.24.#A	3x 380–480 Vac 4100W, 6.6-5.2A	3950 W / 16kHz 7.2 A, 460Vac (rms)	60
	3x 380–480 Vac 3180-4020 W, 5.1 A	3020-3820 W / 16kHz 5.0 A 460Vac (rms)	70
MK 152-#I#.11.#B MK 152-#I#.17.#B	3x 200–240 Vac 3050-3650W, 9.7A	2900-3450 W / 16 kHz 10.5 A, 215Vac (rms)	50
MK 152-#I#.24.#B	3x 200–240 Vac 2650-3150W, 8.6A	2500-3000 W / 16 kHz 9.1 A, 215Vac (rms)	60
	3x 200–240 Vac 1650-1950W, 6A	1550-1850 W / 16 kHz 5.7 A, 215Vac (rms)	70
MK 152-#I#.11.#D MK 152-#I#.17.#D	3x 380–480 Vac, 2500W, 4.0-3.2A	2400 W / 16kHz 4.7 A, 460Vac (rms)	50
MK 152-#I#.24.#D	3x 380–480 Vac, 2500W, 3.2-3.6A	2350 W / 16kHz 4.4 A 460Vac (rms)	60
	3x 380–480 Vac, 1560-1880W, 2.4A	1480-1780 W / 16kHz 2.3 A 460Vac (rms)	70
MK 152-#I#.11.#E MK 152-#I#.17.#E	3x 200–240 Vac,1900-2300W, 6.1A	1800-2175 W / 16kHz / 6.6 A 215Vac (rms)	50
MK 152-#I#.24.#E	3x 200–240 Vac, 1650-2000W, 5.4A	1550-1900 W / 16kHz / 5.7 A 215Vac (rms)	60
	3x 200–240 Vac, 1050-1300W, 3.9A	1000-1200 W / 16kHz / 3.7 A 215Vac (rms)	70
MK 152-#I#.11.#F MK 152-#I#.17.#F	3x 380–480 Vac 6000W, 7.6A	5850 W / 16kHz, 11.9-9.3 A, 360- 460Vac (rms)	40
MK 152-#I#.24.#F	3x 380–480 Vac 5600W, 7.1 A	4790 W / 16kHz 9.7-7.6 A, 360- 460Vac (rms)	50
	3x 380–480 Vac 4600W, 6.0 A	3720 W / 16kHz 7.2-5.9 A, 360- 460Vac (rms)	60
	3x 380–480 Vac 3200W, 4.2 A	2660 W / 16kHz 5.4-4.2 A, 360- 460Vac (rms)	70

Model	Input at 50 / 60 Hz	Output	Ambient Tempera- ture [C°]
MK 152-#I#.11.#G MK 152-#I#.17.#G MK 152-#I#.24.#G	3x 200–480 Vac 2500-6000W, 7.6A	4500-5700 W / 16kHz, 8.7 A, 180- 440Vac (rms)	40
	3x 200–480 Vac 2300-5600W, 7.1A	4200-5300 W / 16kHz 8 A, 180- 440Vac (rms)	50
	3x 200–480 Vac 1900-4600W, 6.0A	3450-4370 W / 16kHz 6.6 A, 180- 440Vac (rms)	60
	3x 200–480 Vac 1300-3200W, 4.2A	2400-3040 W / 16kHz 4.6 A, 180- 440Vac (rms)	70
MK 152-#I#.11.#H MK 152-#I#.17.#H MK 152-#I#.24.#H	3x 200–480 Vac 3000-4100W, 9.7- 5.5A	2850-3900 W / 16kHz 10.3-5.8 A, 180-440Vac (rms)	50
	3x 200–480 Vac 2600-4100W, 8.6- 5.6A	2470-3900 W / 16kHz 9-5.8 A, 180-440Vac (rms)	60
	3x 200–480 Vac 1600-3000 W, 6.0-4.7A	1500-2850 W / 16kHz 5.5-4.3 A 180-440Vac (rms)	70

#: Platzhalter @ ZIEHL-ABEGG Bezeichnung

Die Leistungsdaten des Motors im Ventilator stehen neben den obigen Angaben auf dem Leistungsschild.

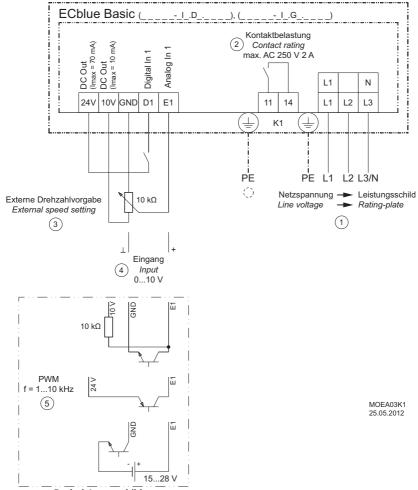
9.2.2 UL: Überlastschutz

Die integrierten drehzahlveränderlichen Antriebe sind mit einem fest eingestellten Motorüberlastschutz und einem fest eingestellten Kurzschlussschutz ausgerüstet.

Der fest eingestellte Motorüberlastschutz schützt den Motor bei Überlastbedingungen durch Reduzierung des Stromflusses zu den internen Motorausgangsklemmen. Dieser Schutz wird durch einen Algorithmus erzielt, der auf den I²t Wert des Motorstromes basiert.

Die Überlastschutz Sicherheit ist optimal ausgelegt auf die Spezifikation des Motors und letztendlich auf die Anwendung des integrierten drehzahlveränderlichen Antriebs. Das ist typischerweise 100 % des Stromes unter Volllast.

Der fest eingestellte Kurzschlussschutz wirkt durch Veränderung des Stromflusses zu den internen Motorausgangsklemmen, hierzu wird der Ausgangsstrom und die Busspannung gemessen. Der Schutz des Motors besteht aus Hardware und Software.


9.2.3 UL: Bemessung Kurzschlussstrom

Die integrierten drehzahlveränderlichen Antriebe sind dafür geeignet in einem Stromkreis eingesetzt zu werden, der nicht mehr als 100 kA RMS symmetrisch liefern kann. Details können der nachfolgenden Tabelle entnommen werden.

		urzschlussschutz müssen den Anforder	
Versuche wu	rden mit RK S	Sicherungen ohne Halbleiterschutz durc	hgeführt:
Sicherungs- klasse	Maximale Spannung AC	Bemessung der Sicherung	benutzter Motortyp
RK1	277 V	20 A / 600 V	MK116- #I#.##.#C
		(z. B. Ferraz Shawmut / TRS20R)	
RK1	130 V	10 A / 250 V	MK116- #I#.##.#I
		(z. B. Ferraz Shawmut / TRS10R)	
RK5	240 V	25 A / 250 V	MK116- #I#.##.#B
		(z. B. Ferraz Shawmut / TR25R)	MK116- #I#.##.#G
			MK152- #I#.##.#E
RK5	240 V	50 A / 250 V	MK152- #I#.##.#B
		(z. B. Ferraz Shawmut / TR50R)	
RK5	480 V	15 A / 600 V	MK116- #I#.##.#A
		(z. B. Ferraz Shawmut / TR15R)	MK116- #I#.##.#F
			MK116- #I#.##.#H
			MK152- #I#.##.#D
RK5	480 V	30 A / 600 V	MK152- #I#.##.#A
		(z. B. Ferraz Shawmut / TR30R)	MK152- #I#.##.#H
RK5	480 V	25 A / 600 V	MK152- #I#.##.#F
		(z. B. Ferraz Shawmut / TR30R)	MK152- #I#.##.#G

Der integrierte fest eingestellte Kurzschlussschutz bietet keinen Schutz für den Endstromkreis. Der Schutz für den Endstromkreis muss gemäß den nationalen Elektrischen Richtlinien ausgeführt werden, dieser muss zusätzlich allen lokalen Richtlinien oder gleichwertigen entsprechen.

9.3 Anschlussplan

- Netzspannung P Leistungsschild
- 2 Kontaktbelastung max. AC 250 V 2 A
- 3 Externe Drehzahlvorgabe
- 4 Eingang 0...10 V
- 5 PWM Eingang, f = 1...10 kHz

Weitere Angaben unbedingt beachten P Netzanschluss!

UL: Eingang (Netz)

Es müssen Kupfer Anschlussleitungen mit einer Isolationstemperatur von mindestens 80 °C eingesetzt werden!

9.4 EG-Einbauerklärung

Original (deutsch)

im Sinne der EG-Richtlinie Maschinen 2006/42/EG, Anhang II B

ZA87 1750 Index 007 00296702-D

Die Bauform der unvollständigen Maschine:

- Axialventilator FA., FB., FC., FE., FF., FG., FS., FT., FH., FL., FN., FV., DN., VR., VN., ZC., ZF., ZG., ZN.
- Radialventilator RA.., RD.., RE.., RF.., RG.., RH.., RK.., RM.., RR.., RZ.., GR.., ER.., WR..
- Querstromventilator QK..., QR..., QT..., QD..., QG...

Motorbauart:

- Asynchron-Innen- oder -Außenläufermotor (auch mit integriertem Frequenzumrichter)
- Elektronisch kommutierter Innen- oder Außenläufermotor (auch mit integriertem EC-Controller)

entspricht den Anforderungen von Anhang I Artikel 1.1.2, 1.1.5, 1.4.1, 1.5.1 der EG-Richtlinie Maschinen 2006/42/EG.

Hersteller ist die

ZIEHL-ABEGG SE Heinz-Ziehl-Straße D-74653 Künzelsau

Folgende harmonisierte Normen sind angewandt:

EN 60204- Sicherheit von Maschinen - Elektrische Ausrüstung von Maschi-

1:2006+A1:2009 nen - Teil 1: Allgemeine Anforderungen

EN ISO 12100:2010 Sicherheit von Maschinen - Allgemeine Gestaltungsleitsätze -

Risikobeurteilung und Risikominderung

EN ISO 13857:2008 Sicherheit von Maschinen - Sicherheitsabstände gegen das Er-

reichen von Gefährdungsbereichen mit den oberen und unteren

Gliedmaßen

Hinweis: Die Einhaltung der EN ISO 13857:2008 bezieht sich nur dann

auf den montierten Berührschutz, sofern dieser zum Lieferum-

fang gehört.

Die speziellen Technischen Unterlagen gemäß Anhang VII B sind erstellt und vollständig vorhanden.

Bevollmächtigte Person für das Zusammenstellen der speziellen Technischen Unterlagen ist: Herr Dr. W. Angelis, Anschrift siehe oben.

Auf begründetes Verlangen werden die speziellen Unterlagen an die staatliche Stelle übermittelt. Die Übermittlung kann elektronisch, auf Datenträger oder auf Papier erfolgen. Alle Schutzrechte verbleiben bei o. g. Hersteller.

Die Inbetriebnahme dieser unvollständigen Maschine ist so lange untersagt, bis sichergestellt ist, dass die Maschine, in die sie eingebaut wurde, den Bestimmungen der EG-Richtlinie Maschinen entspricht.

Künzelsau, 12.12.2017

ZIEHL-ABEGG SE Dr. W. Angelis Technischer Leiter Lufttechnik

i.V. W. Angelis

9.5 Stichwortverzeichnis

Α		N	
Ableitstrom Anziehdrehmomente	45 20	NFPA79	28
Aufstellung	15	R	
E		Reibwert Relais	20 34
Edelstahl Ein-Quadrantenbetrieb	20 11	Relaisausgang	34
Eingangswiderstand	44	S	
Einschraublänge ErP-Verordnung	20 12	S1-Betrieb	11
· ·	12	Schallleistungspegel Steuerleitungen	36 28
F		-	
Fehlerstrom-Schutzschalter Fettgebrauchsdauer	31 42	Т	
Freigabe	34	Taktfrequenz Technische Daten	44 4, 44
G		Temperaturmanagement	39
Gewindegröße	20	U	
Gleichspannung	29	Unwucht	37
1		V	
IT-System	30	Vorgabesignal	33
K		Vorsicherung	45
Kamin	19		
	17, 21		
Kühlung	42		
L			
Lager	38		
Lagertausch Lebensdauer	43 11		
Leistungsschild	43		
Leitungsschutz	29 41		
Luftstrom	41		

9.6 Herstellerhinweis (**E**

Unsere Produkte sind nach den einschlägigen internationalen Vorschriften gefertigt. Haben Sie Fragen zur Verwendung unserer Produkte oder planen Sie spezielle Anwendungen, wenden Sie sich bitte an:

ZIEHL-ABEGG SE Heinz-Ziehl-Straße 74653 Künzelsau

Telefon: +49 (0) 7940 16-0 Telefax: +49 (0) 7940 16-504

info@ziehl-abegg.de

http://www.ziehl-abegg.de

9.7 Servicehinweis

Bitte kontaktieren Sie bei technischen Fragen bei der Inbetriebnahme oder bei Störungen unseren technischen Support für Regelsysteme - Lufttechnik.

Telefon: +49 (0) 7940 16-800

Email: fan-controls-service@ziehl-abegg.de

Für Lieferungen außerhalb Deutschlands stehen weltweit Ansprechpartner in unseren Niederlassungen zur Verfügung, siehe www.ziehl-abegg.com.

Bei Rücklieferungen zur Überprüfung bzw. Reparatur benötigen wir bestimmte Angaben, um eine zielgerichtete Fehlersuche und schnelle Reparatur zu ermöglichen. Bitte verwenden Sie hierzu unseren Reparaturbegleitschein. Dieser wird Ihnen nach Rücksprache von unserer Supportabteilung zur Verfügung gestellt.

Des Weiteren ist dieser zum Download auf unserer Website. Support - Downloads - Allgemeine Dokumente.

